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Abstract

Investigation for using different penalty functions (L1 - absolute value penalty or
lasso,L2 - standard weight decay or ridge regression, weight elimination etc.) on
the weights for logistic regression for classification. 5 data sets from UCI Machine
Learning Repository were used.

1 Introduction

For supervised learning algorithms over-fitting is usuallya potential problem which we need to
solve. It is well-known fact that for unregularized discriminative models fit via training error mini-
mization, sample complexity (training set size needed to learn ”well” in some sense) grows linearly
with the VCD (Vapnik Chervonenkis Dimension). Moreover, VCD for most models grows linearly
in the number of parameters, which usually grows at least linearly in the number of input features.
So, if we do not have training set size large relatively to theinput dimension, we need some special
mechanism - such as regularization, which makes the fitted parameters smaller to prevent over-fitting
[4](p.1).

In this paper, we mostly focused on study the typical behavior of two well-know regularization
methods:Ridge Regressionor L2 penalty function andLassoor L1 penalty function.L2 penalty
function uses the sum of the squares of the parameters and Ridge Regression encourages this sum
to be small.L1 penalty function uses the sum of the absolute values of the parameters and Lasso
encourages this sum to be small.

We are going to investigate these two regularization techniques for classical classification algorithm:
Logistic Regression for different data sets.

2 Logistic Regression

Logistic Regression is a popular linear classification method. It’s predictor function consists of a
transformed linear combination of explanatory variables.

Our model:y - multinomial random variable,x - feature vector,θ - weigth vector.y’s posterior is
the ”softmax” of linear functions of the feature vectorx.

p(y = k|x, θ) =
exp(θ>k x)∑
j exp(θ>j x)

(1)

To fit this model we need to optimize theconditional log-likelihood̀ (θ;D):

`(θ;D) =
∑

n

log p(y = yn|xn, θ) =
∑

nk

yn
k log pn

k (2)

whereyn
k ≡ [yn == k], pn

k ≡ p(y = k|xn).



To maximize the log-likelihood we set it’s derivatives w.r.t to θ to zero.

∂`(θ)

∂θi

=
∑

n

(yn
i − pn

i )xn (3)

Typically some method like conjugate gradients can be used then to maximize log-likelihood. It
needs (2) and (3): value of` and it’s derivatives.

3 Regularization

3.1 Penalty Functions

As was mentioned before, using logistic regression withoutany additional regularization can not
guarantee you good results, because of possible over-fitting. This usually happens when the number
of observations or training examples (m) is not large enough, compared with the number of feature
variables (n) [3](p.4). So, we need some kind of regularizer in order to get stable classifier. One of
the way is using penalization.

The general motivation behind penalizing the likelihood - the approach logistic regression can be
regularized in a straight forward manner - is the following:Avoid arbitrary coefficient estimateŝθ
and a classification that appears to be perfect in the training set, but is poor in the validation set.
Penalization aims are improving prediction performance ina new data set by balancing the fit to the
data and the stability of the estimates [1](p.4).

Now we are going to penalize logistic regression from (2) in asuch way:

`∗(θ) = `(θ) − λJ(θ) (4)

where
J(θ) =

∑

k

αkψ(θk), (5)

αk > 0.

Usually the penalty functionψ is chosen to be symmetric and increasing on[0,+∞]. Furthermore,
ψ can be convex or non-convex, smooth or non-smooth. A good penalty function should result in
unbiasedness, sparsityandstability [6](p.20). Most popular penalty functions are in the Table 1.
More examples are in [6](p.21).

Now, we are going to consider two special cases of functionJ(θ) that are usually used in practice:
J(θ) =

∑
k |θk| (or `1) andJ(θ) =

∑
k θ

2
k (or `2).

3.2 `2-regularization

Over-fitting often tends to occur when the fitted model has many feature variables with relatively
large weights in magnitude. To prevent this situation we canuse weight decay method (or ridge
regression). LetJ(θ) =

∑
k θ

2
k (or `2). The result of using such a functionJ(θ) is classifier with

smaller values of weights and often better generalization ability. We can also prune this classifier:
weights with magnitudes smaller than some certain threshold can be considered redundant and re-
moved. This regularization technique is very easy to implement and often works pretty well. It
is still very often used for different applications: in [8] for detecting genes interaction, in [6] for
classification of microarray data, in [1] for gene expression analysis.

3.3 `1-regularization

However,`2 usually leaves most of the weightsθi non-zero that can be a problem when we have a
lot features and want to get sparseθ-vector. It can be also a native characteristic of our data, when
we have a large amount of features, but only relatively smallnumber of them is sufficient to learn
the target concept. So, LetJ(θ) =

∑
k |θk| (or `1). In this case a lot of weights can become zero,

so, that gives a model with relatively sparse vectorθ. We can think about this quality as a possibility
to select important features [3](p.6). Logistic model withsparse vector of weights is simpler and



Table 1: Examples of penalty functions

Penalty function Smoothness at 0 Convexity Authors
ψ(θ) = |θ| yes θ′(0+) = 1 Rudin(1992)
ψ(θ) = |θ|α, α ∈ (0, 1) yes θ′(0+) = ∞ Saquib(1998)
ψ(θ) = α|θ|/(1 + α|θ|) yes θ′(0+) = α Geman(92, 95)
ψ(θ) = |θ|α, α > 1 yes yes Bouman(1993)
ψ(θ) = αθ2/(1 + αθ2) no yes McClure(1987)

more parsimonious and it’s not surprising that it can outperform `2, especially when the number of
observation is smaller than the number of features [4](p.5).

In this paper we are going to compare both these regularization methods on different common clas-
sification data sets (UCI data sets).

4 Experiments

4.1 Data sets
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Figure 1: (A), (B)
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Figure 2: (C), (D)

Our experiments used data sets from the UCI Machine LearningRepository. The first data set was
the Optical Digits data set that was the extraction of handwritten digits from a preprinted form. It
consisted of 3823 training samples and 1797 test ones; had 64attributes and 10 classes (all digits).
The second data set was the Artificial Characters database generated by first order theory that de-
scribed 10 letters of the English alphabet (A,C,D,E,F,G,H,L,P,R). There were 1000 instances (100
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Figure 3: (E), (F), (G)

per class) as learning set and 5000 instances (500 per class)as test one. Every instance had 96 binary
attributes (12*8 matrix).
Then, we used Johns Hopkins University Ionosphere databaseof radar returns from the ionosphere.
There were two classes for this database: ”good” radar return (showing evidence of some type of
structure in the ionosphere) and ”bad” return (signals passed through the ionosphere). Number of
Instances: 351. Number of Attributes: 34 (all of them are continuous). We used 200 of them for
training (carefully split almost 50% positive and 50% negative) and the rest for test.
Fourth data set (SPECTF) described diagnosing of cardiac Single Proton Emission Computed To-
mography (SPECT) images. Each of the patients is classified into two categories: normal and
abnormal. It had 267 instances that were described by 45 attributes.
And the last one was Zoo database (classification for animalsin the zoo). It had 101 instances (we
divided them 80 to 21: learning and test respectively) and 17attributes (15 boolean attributes and 2
numeric).

4.2 Results

We used simple self-written Logistic Regression algorithm(with two variants of regularizing). For
determining optimalλ parameter we used cross-validation. Results of 7 experiments are in Fig-
ures 1, 2, 3.
These experiments show the difference in error rate for`1 and`2 regularization methods. Because
we expected to see the difference when the number of samples was comparatively small to the num-
ber of features, executions for different amount of training instances were made (from 10 to 200 (or
less) with step 10). To avoid problems with ”bad” choice, forevery number of training samples we
made 100 random splits of training data and then reported theaverage error for all cases. So, our
test error is formally the generalization error (for 100 random splits’ experiments). The difference
(`1 outperforming) was not so dramatic as in [4], but in [4](p.5)they considered cases for 1 and 3
relevant features when the total amount of features is from 100 to 1000, that was not true for all of
our experiments.



In Figure 1 there is a result for classification 0 vs 1 and 1 vs 2 digits. In this executioǹ 2 was
a bit better thaǹ 1 (0.2-0.4%). The reasons for this are, first, digits are not similar (in case of 8
vs 9 situation is different) and, second, we used conjugate gradient method for both methods. In
[2](p.5-6) & [4](p.3-4) specific algorithms were used for`1 case. [3](p.6-8) gives a short overview
of methods that can be used to increase performance for`1-regularization.
In Figure 2 we see the result for 8 vs 9 digits (C) and ”a” vs ”c” letters (D). When the number of
samples is small (10-30) relatively to the number of features (64,96),̀ 1 outperformed̀ 2; and then
error rate is almost equal.
In Figure 3 are the results for experiments with 3 last data sets: Ionosphere, Spectf and Zoo (E,F,G
respectively). For (E) & (F) results are similar to (C) & (D) -for the case when number of samples
is small (10-30)̀ 1 outperformed̀ 2. For (G) results for both methods are almost the same.

5 Short Overview of Related Works

In 3.2 we’ve mentioned 3 papers that used`2 regularization. In [4](p.7-8) Ng proved an interesting
fact that for logistic regression with̀1 regularization sample complexity grows onlylogarithmically
in the number of irrelevant features, while`2 grows at least linearly (in the worst case). [3] proposed
specialized method for solving̀1-regularized logistic regression in every efficient way forall size
problems. In [8](p.24) there is a comparison of logistic regression with naive bayes using few
data sets that we used in this paper’ experiments. [1](p.6-7) gives efficiency’ comparison of using
different methods (cross-validation,Akaike Information Criterion etc.) for choosingλ parameter.
[2](p.6-7) is a very good natural example of the case when`1 is much quicker thaǹ2, because of
the sparsity (Text Categorization problem).

6 Concluding Remarks

In this paper we compared two well-known and widely used methods of regularization. The idea
was to understand which method is preferable for different types of data, different amount of training
samples and which additional algorithms can improve these methods. According to this research
(and using results from the papers in the References), we canconclude that̀1 is a good choice when
you do not have enough training samples and your input vectorhas relatively many features or when
you need sparsity (for weight vector) to decrease the time that your algorithm needs to get the result.
On the other hands,`2 is still a good choice for the tasks where most of the weights during learning
process are relevant. It can be interesting also to investigate the same things for other classifiers and
ML algorithms likeNeural Networks(NN), Support Vector Machinesetc. Part of these experiments
was also done for NN and the results are very similar (digits and characters data sets).
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