Introduction to Cryptography 04/10/2018
Lecture 19: Zero-Knowledge Proofs I

Instructor: Vipul Goyal Scribe: Josh Ackerman

1 Introduction

The notion of an interactive protocol is central to modern cryptography. In this lecture we explore
a specific kind of interaction, zero-knowledge protocols, where a prover P tries to convince a verifier
V of the validity of a statement, without leaking any information to V.

For example P might want to convince V of a statement like
3z, yeZst. 2dy+ay+1=0

or,
1, .., 2, € {0,1}" s.t. P(xy,..,2py) =1

where @ is a boolean CNF formula. In a traditional setting, a proof of one of these statements
could simply consist of a record of values satisfy the equation. However, in the context of zero-
knowledge proofs we require that no such information, i.e., the witness itself, is leaked in the
exchange. Although the idea that one could (in a relaxed sense of the word) prove a statement
without revealing any information is quite counterintuitive, we will eventually describe such a
zero-knowledge protocol the graph isomorphism problem (described in section 3).

2 Definition

In the following definition we take P to be a probabilistic polynomial time algorithm structured as
follows,

On Input (x, w, next verifier message):
if next verifier message is empty then
return next verifier message
else
return first prover message.

Think of x as an object which P is trying to show is in a language £, and w as the witness proving
that = € £. Similarly V is works as,

On Input (x, next prover message):
if protocol is not over then
return next verifier message
else
return ACCEPT or REJECT.

With these two definitions in mind, we can now formally define zero-knowledge proofs.

1-1

Definition 1. (Zero-Knowledge Proof). Suppose L is a language. A zero-knowledge protocol is an
interaction between two probabilistic polynomial time algorithms P and V with P trying to convince
V' that x € L and satisfying properties (i), (ii), and (iii) described below.

(i) Completeness. If x € L, w is the correct witness, and the protocol is honestly executed, then
V outputs ACCEPT.

(ii) Soundness. Informally, we wish to capture the idea that no cheating prover can successfully lie
to an honest verifier (except with small probability). Formally, if x ¢ £, for every probabilistic
polynomial time algorithm algorithm P, there is a negligible function negl(-) such that,

Pr [I:’ convinces V that z € £] < negl(-).

(iii) Zero-knowledge. Intuitively, this definition represents the idea that P does not leak any infor-
mation by necessitating that V' can perform the protocol “alone”, and if V' can perform the
protocol alone, then V' does not learn any additional information from its interaction with P.
This intuition is formalized by necessitating that there is a standalone simulator S which can
produce a transcript which is indistinguishable from that of P and V.

Formally, an interaction is considered to be zero-knowledge if for all x € £ there is a prob-
abilistic polynomial time algorithm S which can output a transcript 7/ such that 7 ~. 7/,
where 7 is the distribution of the original interaction transcript. The algorithm S is often
called a simulator.

After reading property (iii) one might wonder, if such a simulator S must exist, then what purpose
does the prover serve to V the first place? The short answer is that the interaction itself in the
protocol is of pragmatic significance.

To illustrate this claim, imagine you (Victor) have a friend named Peggy who claims she can always
make a fair coin land on heads. If you engaged in an interactive protocol with her, you might ask
her to flip a coin 100 times and show you the result each time. If each time she shows you a head,
you would be convinced that she is telling you the truth as there is only a 2719 chance she is not.
On the other hand, the output of a simulation of the protocol can be thought of a video of her
performing the 100 coin flips, and showing the result to the camera each time. In this case you
would be skeptical, since she may have modified the video in some manner such as cutting out the
scenes where the coin lands on tails.

Finally, it is is worth mentioning there are other formalizations of what it means to be zero-
knowledge. Property (iii) can more concretely be characterized as computational zero-knowledge.
Besides computational zero-knowledge proofs, one might also wish to study perfect zero-knowledge
where the distributions produced by the interaction between P and V are exactly the same, or
statistical zero-knowledge, where the two distributions are statistically close.

3 Graph Isomorphism

Informally, two graphs are isomorphic if their edge sets encode the same adjacency information,
i.e., you can permute the vertex labels of one of the graphs so that it is the same as the other graph.
The formal definition of graph isomorphism is presented on the next page.

1-2

Definition 2. Let V(G), E(G) denote the vertex set and edge set of G respectively. Then, a pair
of of graphs (Go,G1) is isomorphic (denoted Gy ~ G1) if there exists a permutation 7w : V(Gq) —
V(G1) such that Vz,y € V(Gy),ry € E(Gy) if and only if m(z)m(y) € E(G1) L. The permutation
7 is called an isomorphism.

Figure 1: Two isomorphic graphs.

4 Zero-Knowledge Protocol for Graph Isomorphism

Let Gy and G be graphs on n vertices and define S;, to be the set of permutations of n elements.
On input a pair of graphs (G, G1), known to both parties, the protocol proceeds as follows,

Prover: Sample o & Sy, and send H := o(Gy) to the verifier.

Verifier: Pick ch € {0,1}, and send ch to the prover.

Prover: If ch = 0 then send ¢ := o to the verifier, and otherwise send ¢ := o o7~

Verifier: Output ACCEPT if and only H = ¢(Gep).

Intuitively, the verifier asks the prover to either show Gy ~ o(Gy) or G1 ~ o(Gg) which if Gy ~ G,
the prover should be able to do (by sending the right permutation to the verifier). We now show
that this protocol satisfies completeness, soundness of %, and zero-knowledge. In a future lecture
we will demonstrate how to use repetition to create a protocol which actually satisfies the definition
of soundness in the sense of property (ii).

Theorem 1. The above protocol satisfies completeness, soundness %, and zero-knowledge.
Proof.

Completeness. To show this protocol is complete, we need to argue that when the prover has the
correct permutation 7w and the verifier is honest, then the verifier will end by returning ACCEPT. So
assume that 7 is a witness to the isomorphism of Gy and G, i.e., 7(Go) = G1. We will examine

'Formally the edge set of a graph E is a subset of (‘2/) so it would be more precise to write {z,y} € F, but it is a
bit clumsy, so often people write zy € F instead.

1-3

the cases when the verifier sends ch = 0 and ch = 1.

Case 1 (ch = 0). As discussed earlier, when the verifier sends ch = 0, he is asking the prover
to show that H ~ ¢(Gp). Recall that H := 0(Gp), and that when the verifier sends ch = 0 the
prover returns ¢ := 0. Certainly, 0(Gg) ~ 0(Gy), so the verifier will output ACCEPT.

Case 2 (ch = 1). Again the verifier asks the prover to show that H ~ ¢(Gp). The prover
does this by sending the verifier ¢ := o o 7! as a witness. Since

H = 0(Gy)
and
p(G1) = g o™ (G1) = 0(Go)
the verifier will find that H ~ ¢(G1), and output ACCEPT as desired.

Soundness % We will show a weaker form of soundness. Rather than showing that if Gy % G
then for every probabilistic polynomial time algorithm algorithm P, there is a negligible function
negl(-) such that,

Pr[ﬁ’ convinces V that Gy ~ G1] < negl(:)

we will instead show
Pr[]5 convinces V that Gg ~ Gl] <

N | —

So suppose Gg 2 G1. By definition we know that for any graph G’ either G’ ~ Gy or G’ ~ G,
but not both (since ~ is transitive). Essentially, this means that the prover could pass one of
the tests, but not both. More specifically, if the verifier sends ch = 0, then the prover sends o,
in which case the verifier will accept. However, when ch = 1, the prover needs to come up with
a permutation ¢ that shows o(Gy) ~ ¢(G1), and if Gy % G1, then such a task is not possible,
causing the verifier to reject. So since the verifier only picks ch € {0, 1} it follows that,

. 1
Pr[P convinces V that Gy ~ Gl} < 3

as desired.

Zero-knowledge. We aim to construct a simulator S which outputs a transcript which is com-
putationally indistinguishable from an honest execution of the above protocol. First we explore an
incorrect attempt which illustrates many core ideas in the correct protocol, but fails for a subtle
yet critical reason. Finally, we will conclude by presenting a correct version.

Incorrect Attempt: Define S as follows,

1) Sample o & Sn, b & {0,1}, and set H := o(Gp).

)

2) Choose ch & {0,1}.

3) If ch = b output o, otherwise repeat from (1).
)

4) Output ACCEPT.

1-4

Now we would need to show that the distribution 7 of the real protocol is indistinguishable from
the distribution 7 from S. However, one might suspect from the incorrect attempt label attached
to the above definition of S, that there is a reason why 7 #%. 7/. Upon comparing S and the

original protocol, one might conjecture that the problem lies in the first step of S, since S sets
H := o(G}p) where o & S, b & {0,1} as opposed to the protocol which deterministically sends

o(Gy),o & Sn. However, this disparity turns out be inconsequential, due to the following fact
which essentially corroborates that this change is not computationally noticeable.

Fact 1. If Gy ~ G then for o & Sh, the distributions {o(Go)} and {c(G1)} are equal.

We will give a more detailed argument for why step (1) is valid towards the end of this section.
The actual source of the flaw is how S simulates the verifier sampling ch and sending it to the
prover. In S, ch is sampled uniformly at random, whereas there is no such restriction in the
actual protocol. So while executing the original protocol, V' could be bias in how it chooses ch.
For example, V' might decide to always send the verifier ch = 1. If this was the case, then V
always sends ch = 1, whereas S only sets ch = 1 with probability % This dichotomy does in fact
impact computational indistinguishability, since the transcript 7/ from S is always fair when 7
from the original protocol may not be. So we find 7 %, 7.

Reflecting on how to remedy this flaw, we notice that we need to give S a more realistic way
of sampling ch in step (2). Of course we cannot fix a deterministic strategy, or really any sort of
probability distribution to pick ch from. This observation motivates our approach to remedying
the problem which is to give S access to an arbitrary black-box verifier V* which supplies S with
the random bit for ch. Now using V* we present the corrected version of S.

Correct Attempt: The correct S is as follows,

1) Sample o & Sn, b & {0,1}, and set H := o (Gp).
2) Feed H into V* to get ch.

3) If ch = b output o and, otherwise repeat from (1).
4) Output ACCEPT.

Since each ch comes from an arbitrary V*, we correct the issue faced earlier since V* could also
reflect any sort of bias present in the original protocol. Otherwise, it should be clear that S at least
superficially simulates a run of the original protocol. Now we only need to argue that 7/ ~. 7. We
remark that to show 7/ &, 7 it suffices to show that the distribution of the output in step (1) is
indistinguishable from step (1) in the actual protocol, as the rest of S is primarily identical to the
protocol, when Gy ~ G1.

By assumption, Gy ~ G, and so by fact (1) it follows that {o(Gp)} = {0(G1)} for any o & s,

Next, note that when o & Sy that 0 o & for a fixed & € S, still behaves as a uniformly random
permutation. Subsequently,

{0(Go)} = {(o0n71)(G1)} = {0s(Gh)}

where og is the permutation chosen in step (1) of S, and b ﬁ {0,1}. Hence, the distributions
for the output of step (1) in the original protocol and S are the same, so certainly 7/ a2, 7. This
completes the proof. [|

1-5

5 Looking Ahead

In this lecture we discussed the fundamentals of zero-knowledge proofs, and presented an example
of one. In future lectures we will explore the concepts such as sequential repetition to improve the
probability bounds for soundness, connections to NP, non-interactive variants of zero-knowledge
proofs, and applications to cryptocurrencies.

1-6

