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Minimizers definition and properties

Minimizers (k,w,o)In each window of w consecutive k-mers, select the smallest k-mer according
to order o.

1. No large gap: distance between selected k-mers is ≤ w
2. Deterministic: two strings matching on w consecutive k-mers select the
same minimizer
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Computing read overlaps

1. No large gap: no
sequence ignored

2. Deterministic:
reads with overlap
in same bin

Overlaps

Cluster by
minimizer
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Many applications of minimizers
• UMDOverlapper (Roberts, 2004): bin sequencing reads by shared
minimizers to compute overlaps
• MSPKmerCounter (Li, 2015), KMC2 (Deorowicz, 2015), Gerbil (Erber,
2017): bin input sequences based on minimizer to count k-mers in parallel
• SparseAssembler (Ye, 2012), MSP (Li, 2013), DBGFM (Chikhi, 2014):
reduce memory footprint of de Bruijn assembly graph with minimizers
• SamSAMi (Grabowski, 2015): sparse suffix array with minimizers
• MiniMap (Li, 2016), MashMap (Jain, 2017): sparse data structure for
sequence alignment
• Kraken (Wood, 2014): taxonomic sequence classifier
• Schleimer et al. (2003): winnowing
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Improving minimizers by lowering density
DensityDensity of a scheme is the
expected proportion of selected
k-mer in a random sequence:

d =
# of selected k-mers

length of sequence

Cluster by
minimizer

Lower density
=⇒ smaller bins
=⇒ less computation
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Minimizers density minimizing problem

For fixed k and w:
• Properties “No large gap” & “Deterministic” unaffected by order
• Density changes with ordering o
• Lower density =⇒ sparser data structures and/or less computation
• Benefit existing and new applications

Density minimization problemFor fixed w, k, find k-mer order o giving the lowest expected density
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Density and density factor trivial bounds

1
w︸︷︷︸

Pick every other w k-mer

≤ d ≤
Pick every k-mer︷︸︸︷1

Random order usual expected density d = 2
w+1

1+
1
w ≤ df = (w + 1) · d ≤ w + 1

Random order usual expected density factor df = 2
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Schleimer’s bound does not apply in general

d ≥ 1.5+ 12w
w + 1 (Schleimer et al.)

Applies only if w � k, or for random orders

d ≥
1.5+ 12w + max

(0, b k−ww c)
w + k

(
−−−→
k→∞

1
w

)

Valid for any k,w and any order
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Asymptotic behavior in k and w

What is the best ordering possible when:
• w is fixed and k →∞
• k is fixed and w →∞
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A universal set defines an ordering
Universal setA set M of k-mers that intersects every path of w nodes in the de Bruijn graph
of order k.
• w = 2 =⇒ M is a vertex cover
• From M, get order with density d ≤ |M|

σk

000010101111

100110

011 001
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Universal set of size σk
w

⇓
Order with density 1w
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Creating a universal set, k = 3,w = 3, algorithm overview
Start with a de Bruijn graph
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Creating a universal set, k = 3,w = 3, algorithm overview
Embed into a w dimensional space using ψ
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Creating a universal set, k = 3,w = 3, algorithm overview
An edge correspond (almost) to a rotation by 2π/w
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Creating a universal set, k = 3,w = 3, algorithm overview
After w edges return to same sub-volume
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Creating a universal set, k = 3,w = 3, algorithm overview
Pick k-mers in the highlighted “wedge”
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Asymptotic behavior in w
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Summary
Asymptotic behavior of minimizers is fully characterized:
• Minimizers scheme is optimal for large k: d −−−→

k→∞
1
w

• Minimizers scheme is not optimal for large w: df = θ(w)

• Tighter lower bound

d ≥
1.5+ 12w + max

(0, b k−ww c)
w + k

• Comparison between k-mers take O(k)
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Future work

• Local scheme: f : Σw+k−1 → [1,w]

• Local schemesmight be optimal for large w
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