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Minimizers definition and properties

Minimizers (k,w, 0)
In each window of w consecutive k-mers, select the smallest k-mer according

to order o.

1. No large gap: distance between selected k-mers is < w

2. Deterministic: two strings matching on w consecutive k-mers select the
same minimizer



Computing read overlaps
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Many applications of minimizers

e UMDOverlapper (Roberts, 2004): bin sequencing reads by shared
minimizers to compute overlaps

e MSPKmerCounter (Li, 2015), KMC2 (Deorowicz, 2015), Gerbil (Erber,
2017): bin input sequences based on minimizer to count k-mers in parallel

e SparseAssembler (Ye, 2012), MSP (Li, 2013), DBGFM (Chikhi, 2014):
reduce memory footprint of de Bruijn assembly graph with minimizers

e SamSAMi (Grabowski, 2015): sparse suffix array with minimizers

e MiniMap (Li, 2016), MashMap (Jain, 2017): sparse data structure for
sequence alignment

e Kraken (Wood, 2014): taxonomic sequence classifier

e Schleimer et al. (2003): winnowing



Improving minimizers by lowering density
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Minimizers density minimizing problem

For fixed k and w:

e Properties “No large gap” & “Deterministic” unaffected by order
e Density changes with ordering o
e Lower density = sparser data structures and/or less computation

e Benefit existing and new applications



Minimizers density minimizing problem

For fixed k and w:

e Properties “No large gap” & “Deterministic” unaffected by order
e Density changes with ordering o
e Lower density = sparser data structures and/or less computation

e Benefit existing and new applications

Density minimization problem
For fixed w, k, find k-mer order o giving the lowest expected density



Density and density factor trivial bounds

Pick every k-mer

Pick every other w k-mer

Random order usual expected density d = WLH



Density and density factor trivial bounds

Pick every k-mer

Pick every other w k-mer

Random order usual expected density d = WLH

1+1W§df:(w+1)-d§W+1

Random order usual expected density factor df = 2
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Asymptotic behavior in k and w

What is the best ordering possible when:

e wis fixed and k — oo

e kis fixedand w — oo



A universal set defines an ordering

Universal set
A set M of k-mers that intersects every path of w nodes in the de Bruijn graph

of order k.

e W=2 =— Mis avertex cover




A universal set defines an ordering

Universal set
A set M of k-mers that intersects every path of w nodes in the de Bruijn graph

of order k.

e wW=2 — Mis avertex cover
e From M, get order with density d < M
g

. 0 k
Universal set of size e

Y
Order with density .



Creating a universal set, k = 3, w = 3, algorithm overview

Start with a de Bruijn graph

110 100

&



Creating a universal set, k = 3, w = 3, algorithm overview

Embed into a w dimensional space using v
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Creating a universal set, k = 3, w = 3, algorithm overview

An edge correspond (almost) to a rotation by 27 /w
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Creating a universal set, k = 3, w = 3, algorithm overview

After w edges return to same sub-volume

\ 000,
\ 1T 101
011 010 -

h—



Creating a universal set, k = 3, w = 3, algorithm overview

Pick k-mers in the highlighted “wedge”
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Asymptotic behavior in w
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Asymptotic behavior in w
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Asymptotic behavior of minimizers is fully characterized:

1

e Minimizers scheme is optimal for large k: d ——

k—o0

e Minimizers scheme is not optimal for large w: df = 6(w)
e Tighter lower bound

1.5 + 5 + max <O, Lk_TWD
w+ k

d>

e Comparison between k-mers take O(k)



e Local scheme: f: ¥7+k=1 5 [1,w]

e Local schemes might be optimal for large w
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