AUTOMATIC MESH PARTITIONING

GARY L. MILLER *, SHANG-HUA TENG !, WILLIAM THURSTON 1,
AND STEPHEN A. VAVASIS $

Abstract This paper describes an efficient approach to partitioning unstructured meshes that
occur naturally in the finite element and finite difference methods. This approach makes use of the
underlying geometric structure of a given mesh and finds a provably good partition in random O(n)
time. It applies to meshes in both two and three dimensions. The new method has applications in
efficient sequential and parallel algorithms for large-scale problems in scientific computing. This is
an overview paper written with emphasis on the algorithmic aspects of the approach. Many detailed
proofs can be found in companion papers.

Keywords: Center points, domain decomposition, finite element and finite difference meshes, ge-
ometric sampling, mesh partitioning, nested dissection, radon points, overlap graphs, separators,
stereographic projections.

1. Introduction. Many large-scale problems in scientific computing are based
on unstructured ‘meshes in two or three dimensions. Examples of such meshes are
the underlying graphs of finite volume methods in computational fluid dynamics or
graphs of the finite element and finite difference methods in structural analysis. These
meshes may have millions of nodes. Quite often the mesh sizes used are determined
by the memory available on the machine rather than the physics of the problem to
be solved. Thus, the larger the memory the larger the mesh used and, hopefully, the
better the simulation produced.

The main goal of this paper is to describe our work on how and under what
conditions unstructured meshes will have partitions into two roughly equal sized pieces
with a small boundary (called small separators to be defined later). When these
partitions exist they have several important applications to the finite element and
finite difference methods. We list some of them here.

One approach to achieving the large memory and computation power requirements
for large-scale computational problems is to use massively parallel distributed-memory
machines. In such an approach, the underlying computational mesh is divided into
submeshes, inducing a subproblem to be stored on each processor in the parallel
system and boundary information to communicated [67]. To fully utilize a massively
parallel machine, we need a subdivision in which subproblems have approximately
equal size and the amount of communication between subproblems is relatively small.
This approach will decrease the time spent per iteration. There are also methods

* School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. Supported
in part by National Science Foundation grant CCR-9016641.

t Xerox Corporation, Palo Alto Research Center, Palo Alto, CA 94304. Part of the work
was done while the author was at Carnegie Mellon University. Current address: Department of
Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.

1 Department of Mathematics, University of California, Berkeley CA 94720.

§ Department of Computer Science, Cornell University, Ithaca, NY 14853. Supported by an
NSF Presidential Young Investigator award. Revision work on this paper was supported by the
Applied Mathematical Sciences program of the U.S. Department of Energy under contract DE-
AC04-7T6DP00789 while the author was visiting Sandia National Laboratories.

{an g

L3
e
14
L R LR

L)
ip
%

it

i

S

58

which use good partitioning to either decrease the number of iterations used or the
time used by direct methods.

Several numerical techniques have been developed using the partitioning method
to solve problems on a parallel system. Examples include domain decomposition and
nested dissection. Domain decomposition divides the nodes among processors of a
parallel computer. An iterative method is formulated that allows each processor to
operate independently. See Bramble, Pasciak and Schatz [11], Chan and Resasco
[13], and Bjgrstad and Widlund [9]. Nested dissection is a divide-and-conquer node
ordering for sparse Gaussian elimination, proposed by George [34] and generalized
by George and Liu [36] and Lipton, Rose and Tarjan [49]. Nested dissection was
originally a sequential algorithm, pivoting on a single element at a time, but it is
an attractive parallel ordering as well because it produces blocks of pivots that can
be eliminated independently in parallel. Parallel nested dissection was suggested by
Birkhoff and George [8] and has been implemented in several settings [12, 21, 35, 84];
its complexity was analyzed by Liu [52] (for the regular square grid) and Pan and
Reif [63] (in the general case).

Vaidya has produced results which indicate that the quality of good precondition-
ers may also be linked to the existence of good partitions [78].

Therefore, one of the key problems in solving large-scale computational problems
on a parallel machine is the question of how to partition the underlying meshes in
order to reduce the total communication cost and to achieve load balance.

If a mesh has a sufficiently regular structure, then it is easy to decide in advance
how to distribute it among the processors of a parallel machine. However, meshes
of many applications are irregular and unstructured, making the partition problem
much more difficult. In general, there are meshes in three dimensions which have no
small partition [59]. These examples are not the type that woild naturally arise in the
finite element methods, but they are meshes. One important goal is to understand
which meshes do and which do not have small partitions.

Various heuristics have been developed and implemented [65, 68, 82]. However,
none of the prior mesh partitioning algorithms is both efficient in practice and prov-
ably good, especially for meshes from three dimensional problems. Leighton and Rao
[46] have designed a partitioning algorithm based on multicommodity flow problems,
which finds a separator that is optimal within logarithmic factors. But their algo-
rithm runs in superlinear time and it remains to be seen if it could be used in practice
for large-scale problems.

1.1. A new method. In a series of papers, the authors (Vavasis [81]; Miller
and Thurston [59]; Miller and Vavasis [60]; Miller and Teng [55]; Miller, Teng, and
Vavasis [56]) have developed an efficient and provably good mesh partitioning method.
This overview paper describes this new approach. It is written with emphasis on the

algorithmic aspects of the approach. Many detailed proofs can be found in companion
papers [57, 58|.

This method applies to meshes in both two and three dimensions. It is based on
the following important observation: graphs from large-scale problems in scientific
computing are often defined geometrically. They are meshes of elements in a fixed

59

dimension (typically two and three dimensions), that are well shaped in some sense,
such as having elements of bounded aspect ratio or having elements with angles
that are not too small. In other words, they are graphs embedded in two or three
dimensions that come with natural geometric coordinates and with structures.

Our approach makes use of the underlying geometric structure of a given mesh
and finds a provably good partition efficiently. The main ingredient of this approach
is a novel geometrical characterization of graphs embedded in a fixed dimension that
have a small separator, which is a relatively small subset of vertices whose removal
divides the rest of the graph into two pieces of approximately equal size. By taking
advantage of the underlying geometric structure, we also develop an efficient algorithm
for finding such a small separator.

In contrast, all previous separator results (see Section 1.2) are combinatorial in
nature. They not only characterize the small separator property combinatorially, but
also find a small separator based only on the combinatorial structure of the given
graph. When applied to unstructured geometric meshes, they simply discard the
valuable geometric information. The result has been that they are either too costly
to use or they do not find a separator as good as it should be. Worst of all, none of

the earlier separator results is useful for graphs in three dimensions. L™
1‘:

y T Y
1.2. Separators and earlier work. DEFINITION 1.1 (SEPARATORS). A sub- ; .

set of vertices C of a graph G with n vertices is an f(n)-separator that §-splits o
if |C| < f(n) and the vertices of G — C can be partitioned into two sets A and B

-

such that there are no edges from A to B, |A|, |B| < én, where f is a function and 1..
w“d
0<é<l. I

Two of the most well-known families of graphs that have small separators are
trees and planar graphs. Every tree has a single vertex separator that 2/3-splits [44].
Lipton and Tarjan [50] proved that every planar graph has a \/8n-separator that
2/3-splits. Their result improved an earlier one by Ungar [77]. Some extensions of
their work have been made [19, 31, 32, 54], and separator theorems have also been
obtained for graphs with bounded genus (38, 43] and graphs with bounded excluded
minor [2]. In particular, Gilbert, Hutchinson, and Tarjan showed that all graphs with
genus bounded by g have an O(/gn)-separator, and Alon, Seymour, and Thomas
proved that all graphs with an excluded minor isomorphic to the h-clique have an
O(h®/?/n)-separator.

Interestingly, all the characterizations above are combinatorial, not geometric, as
are their proofs!

Separator results for families of graphs closed under the subgraph operation im-
mediately lead to divide-and-conquer recursive algorithms for many applications. In
general, the efficiency of such algorithms depends on & being bounded away from 1
and f(n) being a slowly-growing function.

Perhaps the most classical application of small separator results is nested dissec-
tion, a widely used technique for solving a large class of sparse linear systems. This
approach was pioneered by George [34], who designed the first O(n!®)-time nested dis-
section algorithm for linear systems on regular grids using the fact that the \/n X v/n
grid has a /n-separator. His result was extended to planar linear systems by Lip-

60

ton, Rose, and Tarjan [49]. Gilbert and Tarjan [40] examined several variants of the
nested dissection algorithms. It has been demonstrated, in theory and in practice,
that nested dissection can be implemented efficiently in parallel.

In the analysis of sparse matrix algorithms, a priori upper bounds on operation
counts are rare in the literature (aside from the trivial dense-matrix upper bounds).
The major exception is nested dissection. The a priori bounds attained by nested
dissection, which in many cases are asymptotically the best possible, always depend
on the associated bounds of the underlying graph-separator algorithm. This means
that a careful analysis of separator sizes is an important aspect of nested dissection.

Small separator results have found fruitful applications in VLSI design (Leiser-
son [47]; Leighton [45]; Valiant [79]) and efficient message routing (Fredrickson and
Janardan [28]). They have also been used in proving several complexity-theoretic
results (Paterson [62]; Lipton and Tarjan [51]), and have been used to design efficient
graph algorithms such as parallel construction of breadth-first-search trees (Pan and
Reif [63]), testing graph isomorphism (Gazit [33]), and approximating NP-complete
problems (Lipton and Tarjan [51]).

1.3. Outline of the paper. Section 2 defines a new class of geometric graphs,
the overlap graphs, and describes our main separator theorem. This class has a simple
definition and contains many important classes of graphs as special cases. Section 3
studies meshes from the finite element and finite difference methods. We show that
overlap graphs include “well shaped” meshes. We also show that planar graphs are
a special case of overlap graphs in two dimensions. Section 4 presents a partitioning
algorithm for overlap graphs. The algorithm first uses the geometric information of
the input graph to find a “continuous” separator, then uses the combinatorial struc-
ture to compute a “discrete” separator from its continixgﬁs_ counterpart. The central
step of the algorithm is to find a center point of a point s&t in a fixed dimensions,
where a center point is a point such that every hyperplane passing through it about
evenly divides the point set. We show that center points always exist and can be
computed in polynomial time using linear programming. We also show that the step
of computing a “discrete” separator from a continuous one can be performed in linear
time. Section 5 introduces geometric sampling, a technique that reduces the prob-
lem size and simultaneously guarantees a provably good approximation of the larger
problem. Using geometric sampling, we can compute an approximate center point in
random constant time and find a “good” separator of an overlap graph in random
linear time. We further give a practical heuristic for approximating a center point.
We then extend the partitioning algorithm for unstructured meshes. Section 6 gives
the proof outline of the main separator theorem. We demonstrate how to use geomet-
ric arguments to prove separator properties for graphs embedded in fixed dimension.
Section 7 summarizes the paper and gives open questions.

2. Neighborhood systems and overlap graphs. Our geometric character-
ization of graphs that have small separators is based on the following elementary
concept.

2.1. Neighborhood systems. DEFINITION 2.1. Let P = {p1,...,pn} be points
in R?. A k-ply neighborhood system for P is a set, {Bi,..., B}, of closed balls

61

such that (1) B; is centered at p; and (2) no point p € R? is strictly interior to more
than k balls from B.

A 3-ply neighborhood system in two dimensions is illustrated in Figure 1.

FiG. 1. A 3-ply neighborhood system

The following notation will be used throughout this paper. For each positive real
a, if B is a ball of radius r in IR?, then a - B denotes the ball with the same center
as B but radius ar.

We now state an important property of neighborhood systems [58].

LEMMA 2.2 (BALL INTERSECTION). Suppose {Bi,...,B,} is a k-ply neighbor-
hood system in IRY. For each d-dimensional ball B with radius r, for all constant
B:0<p<1,

[{¢ : BiN B # 0 and r; > Br}| < B743%,

where r; is the radius of B;.

2.2. Overlap graphs. DEFINITION 2.3. Let o > 1 and let {B,...,B,} be
a k-ply neighborhood system for P = {pi1,...,pn}. The (a,k)-overlap graph for
the k-ply neighborhood system {Bi,..., B,} is the undirected graph with vertices V =
{1,...,n} and edges

E={(i,j): (B:N(a-B;) # 0) and ((a- B;)N B; # 0)}.

For simplicity, we call a (1, k)-overlap graph a k-iniersection graph. In the case
that @« = 1 and k = 1, and no two balls in the neighborhood system have a common
point in their interior, we have the family of graphs known as sphere-packings; this
interesting class of graphs will be discussed in the next section.

2.3. Main separator theorem. THEOREM 2.4 (MAIN). Let G be an (a, k)-
overlap graph for some fized d. Then G has an

0 (or B RS T + q(a, k,d)) -separator
that (d+1)/(d+2)-splits. Furthermore, such a separator that (d+1+¢€)/(d+2)-splits

can be computed in random linear time sequentially and in random constant time,
using n processors, for any 1/n'/? < € < 1.

In ..;“
‘“:

LT

14

R TR

“
i

2)

62

\/\>
AR

<] <
v AVAY
A

é 3

> 1
ATy Y,
PO

\

NP
ARV

Fig. 2. Airplane wing (Barth and Jespersen)

Fi16. 3. US map

The function ¢(e, k, d) depends exponentially on d but is independent of n. Since

the interesting cases are when d = 2 or d = 3 and when n is large, this term should
be considered low order.

It has been shown in the companion paper [58] that the bound of Theorem 2.4 is
tight up to a constant factor. Section 6 will outline the proof of this theorem.

3. Finite element and finite difference meshes. One important aspect that

- distinguishes a finite element or finite difference mesh from a regular graph is that

it has two structures: the combinatorial structure and the geometric structure. In

general, it can be represented by a pair (G, zyz) where G describes the combinatorial
structure of the mesh and zyz gives the geometric information.

63

3.1. Meshes from the finite element method. The finite element method
is a collection of numerical techniques for approximating a continuous problem by a
finite structure [69]. To approximate a continuous function, the finite element method
subdivides the domain (a subset of IR?) into a mesh of polyhedral elements (Figures
2 and 3), and then approximates the continuous function by a piecewise polynomial
on the elements.

A common choice for an element in the finite element method is a d-dimensional
simplez, which is the convex hull of (d + 1) affinely independent points in R% eg., a
triangle in two dimensions and a tetrahedron in three dimensions. A d-dimensional
simplicial complez is defined to be a collection of d-dimensional simplices that meet
only at shared faces [6, 7, 59]. So a 2-dimensional simplicial complex is a collection
of triangles that intersect only at shared edges and vertices.

For most applications, a mesh is given as a list of its elements, where each element
is given by the information describing the hierarchical structure of the elements, its
lower dimensional structures such as its faces, edges, and vertices. Moreover, each
vertex has geometric coordinates in two or three dimensions.

Associated with each simplicial complex is a natural graph, its 1-skeleton. For ex-
ample, the 1-skeleton of a 2-dimensional simplicial complex is a planar graph. Con-
versely, every planar graph can be embedded in the plane such that each edge is
mapped to a straight line segment (Fary [25]; Tutte [74, 75]; Thomassen [71]; Frays-
seix, Pach, and Pollack [27]).

In the finite element method, a linear system is defined over a mesh, with variables
representing physical quantities at the nodes. Let finite element graph refer to the
nonzero structure of the coefficient matrix of such a linear system. In the case of
linear finite elements based on a triangulation, such as in Figures 2 and 3, the nodes
of the finite element graph are exactly the nodes of the mesh, and hence the finite
element graph is the same as the 1-skeleton of the simplicial complex. In the case of
higher-order elements, the finite element graph usually contains the 1-skeleton as a
proper subset. It can be obtained from the finite element mesh as follows: Identify
certain points (vertices, points on edges, points in faces, and points in elements) as
“nodes.” Add edges between every pair of nodes that share an element.

To properly approximate a continuous function, in addition to the conditions
that a mesh must conform to the boundaries of the region and be fine enough, each
individual element of the mesh must be well shaped. A common shape criterion for
elements is the condition that the angles of each element are not too small, or the
aspect ratio of each element is bounded [6, 29].

Several definitions of the aspect ratio have been used in literature. We list some
of them.

1. The ratio of the longest dimension to the shortest dimension of the simplex
S, denoted by A;(S). For a triangle in IR?, it is the ratio of the longest side
divided by the altitude from the longest side.

2. The ratio of the radius of the smallest containing sphere to the radius of the
inscribed sphere of S, denoted by A3(S).

3. The ratio of the radius of the circumscribing sphere to the radius of the

LN
e
Y
. L_x

, Pt

e |

64

FiG. 4. Meshes derived from quadirees (S. Miichell)

inscribed sphere of 5, denoted by A3(5).

4. The ratio of the diameter to the dth root of the volume of the simplex S,
denoted by A4(S), where the diameter of a d-simplex S is the maximum
distance between any pair of points in S.

Examples of a simplicial complex with bounded aspect ratio are illustrated in
Figure 4 as well as in Figures 2 and 3. The above definitions of the aspect ratio
are polynomially related to each other. They are also closely related to the smallest
angle of the simplex, which is the smallest angle among all the angles between pairs of
supporting hyperplanes of the simplex. Using elementary geometric arguments, one
can prove the following set of inequalities: There are constants ¢; < ¢, ¢3, ¢4 < Cs,
depending only on d, such that if the smallest angle of S is 8, then

1 2
|si116[s AS) = | sin 8]
(S) < A3(S) < aAy(S) ™
AI(S) < As(S) < as(A(9))? T
caAi(S) < (Al(9)) < es(Ai(S))*

Therefore, if one of the above parameters is bounded by a constant, then all of them
are bounded.

3.2. Graphs from the finite difference method. The finite difference method
is another useful technique for solving computational problems in scientific computing.
It also uses a finite and discrete structure, a finite difference mesh, to approximate a
continuous problem.

Finite difference meshes are often produced by inserting a uniform grid of IR? or
IR? into the domain via a boundary-matching conformal mapping. In general, the
derivative of the conformal transformation must be slowly varying with respect to the
mesh size in order to produce good results. See, for example [72]. This means that
the mesh will probably satisfy a density condition [5, 60].

Let G be an undirected graph and let = be an embedding of its nodes in IR%. We
say w i1s an embedding of density a if the following inequality holds for all vertices
v in G. Let u be the closest node to v. Let w be the farthest node from v that is

65

FiG. 5. Berger and Bokhari’s example of a density graph.

connected to v by an edge. Then

() = 7 (@)l _

[lm(w) = x()I] =

In general, G is an a-density graph in IR? if there exist an embedding of G in IR¢
with density a. It can be easily shown that there is a A(a, d) depending only on «
and d such that the maximum degree of an a-density graph is bounded by A(e, d).

Furthermore, a finite difference mesh may not be a collection of simplices or ele-
ments as a finite element mesh, so we can not analyze it as a triangulation. Finite
difference meshes are often locally refined by further subdividing some mesh cells. See
Figure 5. This means that nodes occur on the sides of some mesh cells and that inter-
polation must be used in the finite difference approximation. For numerical accuracy
of the interpolation, the usual practice is that mesh cells are refined to a level no more
than a constant factor smaller than their neighboring cells [5]. In the presence of such
refinement, the finite difference mesh will still satisfy a constant density condition.

3.3. Overlap graphs and well shaped meshes. One of the most valuable
aspects of the class of overlap graphs is that it enables us to give a unified geomet-
ric characterization of graphs with the small separator property. The set of overlap
graphs in IR? contains all finite subgraphs of infinite grids, planar graphs and sphere
packing graphs. Moreover, overlap graphs include graphs associated with finite ele-
ment and finite difference methods, as special cases. The parameter «, in a strong
sense, measures the degree to which the mesh is well-shaped.

We now show that for each well-shaped mesh, there is an overlap graph with a pair
« and k that contains the graph defined by (G, zyz) as a subgraph. We say a graph
G, is a spanning subgraph of another graph G if Gy can be obtained from Gq by
deleting edges. A graph G is («, k)-embeddable in IR? if it is a spanning subgraph of
an (a, k)-overlap graph in IRY. Notice that the small separator property is preserved
under spanning subgraphs.

LEMMA 3.1. If G is an a-density graph in R?, then G is (2a,1)-embeddable.

Proof: Let 7 be an embedding of G with density a in IR?. Without loss of generality,
assume that G has vertex set V = {1,2,...,n}. Let P = {x(1),#(2),...,m(n)}. For
each p € P, let ¢(p) denote the point of P — {p} closest to p. Let I' =) T -

L]
L TRt

L2 AR 1T

.
P

L

66

where for each ¢ : 1 < i < n, B; is a ball centered at 7(i), whose radius r; is
0.5||c(p) — pl|. Clearly, balls from I' do not intersect each other. We claim that G is
a subgraph of the 2a-overlap graph G’ of T.

For each edge (u,v) of P, we need to show that (w(u),7(v)) is an edge of G'.
Without loss of generality, assume r, < r,. Because 7 is an a-embedding of G, we
have

Ir(w) 7o)l _
2 B

So w(v) € (2a) - By, and therefore (7 (u), 7(v)) is an edge of G’, completing the proof.
O

LEMMA 3.2. Suppose G is the 1-skeleton of a simplicial complezx K in R?. Let
G be the subgraph of G obtained by removing all vertices that appear on the external
boundary of K. Then if the aspect ratio of K is bounded by a constant a, then there
is a constant ¢ depending only on d and « such that G is (c,1)-embeddable.

Proof: Because the aspect ratio of the complex K is bounded by «, there is a ©
depending only on a and d such that the smallest angle of each simplex of K is at
least ©. Therefore, there is a constant A depending only on d and a, such that the
degree of G is bounded by A. Furthermore, the bounded aspect ratio implies that the
ratio of the longest edge over the shortest edge of any simplex in K is also bounded.
Thus, there is a constant ¢; depending only on d and «, such that for each vertex v
of K, the ratio of the longest edge to the shortest edge connecting v is bounded by
¢1. Moreover, for each vertex v of K that is not on the external boundary, the closest
vertex of v in K is also connected with v by an edge, because no vertex can appear in
the interior of an simplex. Therefore, if we remove all vertices of K on the external
boundary, we obtain a ¢;-density graph G. Let ¢ = 2¢;+ It follows from Lemma 3.1
that G is (c, 1)-embeddable. N o

Therefore, the following theorem follows from Theorem 2.4.
THEOREM 3.3.

o If G is the I-skeleton of a simplicial complez K with bounded aspect ratio,
letting 7 be the number of exterior vertices of K, then G has an

0 (nid_;u + ﬁ) -separator.

e IfGisa graph with bounded density a, then G has an
0 (a . n(d_;ll) -separator.
Moreover, such separators that (d + 1 + €)/(d + 2)-split can be computed in random
O(n) time and in random O(1) time using n processors, for any 1/n'/% < ¢ < 1.

An algorithm for partitioning finite element and difference meshes is given in
Section 5.4.

3.4. Overlap graphs include all planar graphs. The proof that planar graphs
are a special case of overlap graphs relies on the following theorem of Andreev and
Thurston [3, 4, 73] characterizing all planar graphs in a novel geometric fashion.

67

THEOREM 3.4 (ANDREEV AND THURSTON). Each triangulated planar graph G
is isomorphic to a 2-dimensional sphere packing graph.

Simply from the definition, each sphere packing graph is a (1,1)-overlap graph.
Therefore, planar graphs are a special case of overlap graphs.

4. A randomized partitioning algorithm. In this section, we describe a ran-
domized algorithm for computing a small separator of a given overlap graph. In the
next section, we shall show how to make it efficient by using geometric sampling. In
Section 6, we will outline a correctness proof of the algorithm to derive a constructive
proof of Theorem 2.4.

4.1. The algorithm. Given a k-ply neighborhood system I' = {By,..., B}
and the a-overlap graph G of I, let P = {p1,...,pa} be the centers of I'. The
following algorithm first finds a (d — 1)-sphere S with some desired properties to be
stated later and then computes a vertex separator of G from S. In the following
algorithm, let Uy be the unit d-sphere in IR**'. We define ST : R? — U, to be
the standard stereographic projection mapping. This mapping can be described as
follows. Assume IR? is embedded in R¥*! as the z441 = 0 coordinate plane, and
assume U, is also embedded in IR*! centered at the origin. Given a point p in
IR?, construct the line L in IR%*! passing through p and through the north pole
of Uy (that is, the point (0,..,0,1)). Line L must pass through one other point
q of Uy; we define ST(p) to be gq. For a set P = {p;,...,pa} in R?, we denote
{ST(p1), ST(p2), .-, ST(pn)} by ST(P). Recall that the center point of a point set is
the one such that every hyperplane passing through it about evenly divides the point
set. We will define center point formally in Section 4.2.

Algorithm 1 (Generic Geometric Partitioning)
Input: (a neighborhood system I' and the geometric coordinates of its centers
P).
1. Compute @ = ST(P);
2. Find a &-center point ¢ of @;
3. Compute the rotation 7, : Uy — Uy that maps c to ¢;, a point on the
diameter between the south and the north poles, say ¢; = (0,...,0,7).
4. Let m; be the dilation of IR? by a factor of /(1 —r)/(1 + 7).
Choose a random great circle GC of Uy;
6. Transform GC back IR? using the inverse of the above trans-
formations to obtain a separating sphere S, ie, S =
[ST om0 ST om0 ST]™ (GC);

7. Compute a vertex separator of G from S.

o

Algorithm 1 defines some point sets that are not explicitly computed. We intro-
duce them below only for the purpose of explaining the algorithm.

e Let @1 = m1(Q) in Step 3 above;

o Let P, = ST-(Q,), the pre-image of Q; in R?U {o0}. The pre-image of the
north pole is defined to be a point at infinity;

e Let P, = m,(Py) in Step 4;

]
Ll

A

B

9
€

Fih .:-’
)

oeny

[E R]
b g
| a2

w”
- §

68

o Let Q); = ST(P,). Note that the origin (0,0, ...,0) is a center point of Q,.
See further comments below.

4.2. Center points. Suppose P is a finite set of points in R%. A hyperplane H
in R? divides P into three subsets: P* = H* NP, P~ = H- NP, and PN H. The
splitting ratio of H over P, denoted by ¢y (P), is defined as

_ |P*| |P-|
#elF) =mex (w m“)

For each 0 < § < 1, a point ¢ € IR? is a é-center point of P if every hyperplane
containing ¢ é-splits P. Each d/(d + 1)-center point is called a center point of P,
and the set of all center points is denoted by Center(P). The balanced separation
property of a center point makes it very useful for designing efficient divide and
conquer algorithms [16, 30, 55, 83].

Given a set of points P C IR?, the question of whether P has a center point is
always affirmative. This follows from Helly’s Theorem [18].

THEOREM 4.1 (HELLY). Suppose K is a family of at least d + 1 convez sets in
RY, and K is finite or each member of K is compact. Then if each d +1 members of
K have a common point, there is a point common to all members of K.

LEMMA 4.2 (CENTER POINTS). For each set P C IR?, Center(P) # 0.

Proof: ' We prove the lemma by induction on d. When d = 1, the lemma is clearly
true. We now assume that the lemma holds for all d’ < d. If all points of P lie in a
(d — 1)-dimensional affine space, then we can reduce the dimension by one and apply
the induction hypotheses to prove that a better center pdint exists.

So without loss of generality, assume that P does not liein a (d — 1)-dimensional
affine space. Notice that P induces an equivalence relation on the set of closed
halfspaces in IR%: those halfspaces which contains the same subset of points from
P are equivalent. Each equivalence class can be identified with a halfspace whose
supporting hyperplane passes through d affinely independent points from P.

Let H be the set of all closed half-spaces with supporting hyperplane passing
through d affinely independent points of P that contain more than |d|P|/(d + 1)]
points of P. We want to show that

Center(P) = (| H #0.

HeM

We first show that Nyey H # 0. Clearly, each element from H is convex and H
is finite. By Helly’s theorem, it is sufficient to show that for each Hj, ..., Hiyy € H,
N H: # 0.

Note that
d+1 d+1 d+1
N H# =R~ J(R' -~ H) 2 P- | J(R' - H)).
i=1 1=1 i=1
! We present this proof to indicate that there is an O(n?) time algorithm for computing a center
point. Similar proofs can be found in many previous works, e.g., [18].

69

Note also
d41 d+1 l

|U(R? - B)N P) < 3 IR = H) 0 P)] < (d+ 1) 57

i=1

|Pl] < |P].

Hence, P — U} (RY — H;) # 0.

We now show that each point ¢ in Nyen H is a center point of P. Suppose c is
not a center point of P. Then there is a hyperplane h passing through ¢ defining a
halfspace H such that the interior of H contains at least [d|P|/(d + 1)] points of P.
Thus, there is a closed halfspace H' contained in the interior of H that has at least
[d|P|/(d + 1)] points of P, contradicting the assumption that ¢ € H’'. Therefore,
every point in yex H is a center point of P. Similarly, we can show that every
center point of P is in Ngey H. O

Immediately following from the above proof is an O(n?) time algorithm for com-
puting a center point of a set P. This algorithm uses linear programming. It forms
a collection of O(n?) linear inequalities by considering the set of hyperplanes passing
through d affinely independent points of P, and finding the common intersection of
the halfspaces that contain at least dn/(d + 1) points from P. The intersection of
the O(n?) halfspaces can be found in O(n?) time using Megiddo’s linear program-
ming algorithm [22, 53]. We will refer this algorithm as the LP algorithm. Of course,
this algorithm is too slow for applications in practice. An efficient algorithm will be
presented in Section 6.

If ¢ in Algorithm 1 is a §-center point of @, then the origin o is also a é-center
point of @, [58]. First of all, the point ¢; is a §-center point of ;. Now intuitively, a
dilation of IR* moves a center point on the diameter between the south and the north
poles along this diameter either up or down depending on the dilation factor. We
will prove in our companion paper [58] that the dilation of by factor /(1 —r)/(1 + 1)
indeed makes o a é-center point of (J;. So, any hyperplane passing through o é-
splits @2, and hence GC §é-splits (J,. Because all transformations used in the above
partitioning algorithm preserve the splitting ratio of spheres, S also é-splits P.

4.3. Separating spheres. We now explain how to choose a random great circle
in Algorithm 1.

A great circle of Uy is the intersection of Uy with a hyperplane passing through
the center of Uj.

Let randn(m) be a function that generates m normally distributed random num-
bers with mean 0.0 and variance 1.0. A random point p from Uy can be chosen as
p = q/||ql|2, where ¢ = randn(d + 1). A random great circle of Uy is then the great
circle normal to the vector p.

Each (d — 1)-sphere S separates int(.S) from ext(S): any segment connecting a
point in int(S) and one in ext(.S) must intersect S. In analogy to vertex separators
in graph theory, we say that S is called a separating sphere in d-space.

More specifically, for a set of points P = {p1,...,p.} in R? and a constant
0 < § < 1, we say that S §-splits P if both |int(S) N P| < én and |ext(S) N P|
< én.

L]
apab ¥

W B§

L

-

70

4.4. Computing a vertex separator from a separating sphere. We now
show how to compute a vertex separator of an overlap graph G from a separating
sphere S,

‘One approach is to remove one of the two endpoints of each edge cut by S. We say
S cuts an edge (B, B;) of the overlap graph if the line segment between the centers
of B; and B; has a common point with S. Let Es be the set of edges cut by 5. A
ball B; is a boundary ball with respect to S if there is an edge cut by S incident to
it. Let U be the set of all boundary balls and let G5 = (U, Es) be the subgraph of G
induced by S. Clearly, G's is a bipartite graph, with boundary balls from the interior
of S on one side and boundary balls from the exterior of S on the other side.

The discussion in this section assumes that no point of P lies exactly on S. Because
we choose § at random in Algorithm 1, the occurrence of a point of P exactly on S
is a zero-probability event. Even if this event were to occur, a slight generalization
of the results in this section would cover that case. In fact, we can first put all points
of P that appear exactly on S in the vertex separator.

Recall that a verter cover of a graph G is a subset C of vertices such that each
edge G has an endpoint in C. In other words, deleting C from G removes all edges
of G. Simply from the definition of vertex cover, we have

LEMMA 4.3. Suppose I' = {By,...,B,} is a k-ply neighborhood system in IR*
and G is the a-overlap graph of T'. If S is a (d — 1)-sphere that 6-splits T', then each
verler cover C of Gs é-splits G.

Therefore, the best way to compute a vertex separator from S is perhaps to take a
minimum vertex cover of G's. In fact, a minimum vertex cover of a bipartite graph can
be computed in polynomial time, using Dulmage-Mendelsehn decomposition [20] (see
[64] for related applications of Dulmage-Mendelsohn decompasition in sparse matrix
computations).

On the hand, a faster way to compute a vertex separator from S is to put all
the boundary balls from either the interior of S or the exterior of S, whichever has
smaller cardinality, into the separator (also see [84]).

However, in the above construction, one has to check the structure of an overlap
graph to find a vertex separator from a sphere separator. In some applications,
only the neighborhood system is given and it is relatively expensive to compute the
overlap graph. We now show how to find a small vertex separator directly from the
neighborhood system and the separating sphere.

For each edge (B;, B;) cut by S, let ¢;; be the common point of $ and line
segment between the centers of B; and B;. Let r; be the radius of B;. Without loss
of generality, assume r; < r;. Notice that g;; is either in B; or in a - B;. If ¢;; is in
B;, then we put B; in D. If ¢;; is not in B; (in which case it must be in a - B;), we
put B; in D. Clearly, since at least one endpoint of every cut edge is in D, D is a
vertex cover of G's.

We now introduce the notion of overlap neighbor. Let S be a (d — 1)-sphere in
RY, whose radius is r. A ball B; is an overlap neighbor of S if one of the following
conditions is true. '

71

l. B;nS #0;
2.a-BiNS#0and r; <.

The number of overlap neighbors of S is called the overlap number of S. The
set of overlap neighbors of a sphere can be computed in O(n) time directly from the
neighborhood system.

LEMMA 4.4. The set of all overlap neighbors of S is a vertex cover of Gs.

Proof: From the discussion above, D is a vertex cover of Gs. We want to establish
that each ball from D is an overlap neighbor of S to prove the lemma.

We partition the set D into two subsets Dy and D, with

D] = {B,EDB,QS%@}
D'z — D"—Dl.

Clearly, each ball from D, is an overlap neighbor. Now we need to show that for
all B; € Dy, r; <.

If B; € D,, then B;NS = (. There are two possible cases:

e Case 1: If p; € int(S), then it simply follows from B; N S = @, that r; < r;
e Case 2: If p; € ext(S), then from B; € Dy, it follows that a- B;N S # 0,
and there is a ball B; in the neighborhood system such that (1) p; € int(S);
(2) B;NS =0;(3) r; <r;; and (4) - B; N B; # 0. Because ¢ ; is not in B;

(otherwise B; would not be in D) there is no intersection between B; and S,
and hence condition (2) holds. Hence r; < r,and r; < r; <.

Thus, in each case, we have r; < r, i.e., B; is an overlap neighbor, completing the
proof of the lemma. =

So, our second method is to remove the set of all overlap neighbors. The method
is efficient when the overlap graph G is not given. Section 6 shows that the expected
number of overlap neighbors generated by the above algorithm is small.

Notice that the definition of overlap neighbors implicitly removes the assumption
that no point of P lies exactly on S. If the center of B; appears exactly on S, then
B;N S # (. Hence B; is an overlap neighbor and is placed in the vertex separator.

5. Making the method practical. The run time of the algorithm above cru-
cially depends on the time needed to compute a center point in (d + 1)-space. All
other steps of the algorithm can be performed in O(n) time, and in constant parallel
time using O(n) processors.

Unfortunately, no linear-time algorithm is known for computing center points. As
shown in Section 4.2, there is a method that requires solving a set of @(n?) linear
inequalities. The only improved result, due to Cole, Sharir, and Yap [16], is that a
center point in two dimensions can be computed in O(nlog®n) time, and in three
dimensions in O(n?log” n) time. No subquadratic algorithm is known that always
returns even an approximate center point.

In this section, we show that an approximate center point can be found efficiently

[
ek P
[X]
, b
Y

- §

72

using geometric sampling [15, 42, 66], which is an important algorithmic technique
for designing efficient geometric algorithms.

5.1. Geometric sampling for efficiency. To illustrate the idea, we first show
how to use random sampling to compute an approximate center point in one dimen-
sion. In this case, the input is a set of 2n integers P = {p,...,pa}. If p; < p; for
all i < j then center(P) = [p,, prs1].

Now suppose we randomly select an element from P, say p. The probability that
P € {Pn;Pn+1} is 1/n, while the probability that Pn/2] < P < Prany2) is 0.5. So, with
probability 0.5, a randomly selected element from P is an ¢ = 3/4 center point.

We can improve € using larger samples! Suppose ! random elements S = T
are sclected and their median r is the output. Letting I(r) be the rank of r in P,
it follows from a simple analysis that E[I(r)] = n, and V[I(r)] = (2n 4+ 1)(2n — 1 —
21)/(8k + 6). By Chebyshev’s inequality,

. 1’12
P(I(r) =nl) 2) < o

Thus, with probability at least 0.5, [I(r)—n| < n/V1, i.e.,risa 1/2V/1 center point
of |P|. A 1/2+1/2V1 center point of |P| can be computed in O(I) time. A similar
sampling idea was used by Floyd and Rivest [26] in their fast selection algorithm.

The algorithm can be generalized to higher dimensions. In d dimensions, the
randomized §-center point algorithm has the following form.

Algorithm 2: (The Sampling Algorithm for Cente™Points)
Input:(a point set P C RY) =
1. Select a subset S of P with size ! uniformly at random:;
2. Compute a center point cg of S, using the LP algorithm for center
points, given in Section 4.2;
3. Output cs.

The feasibility of Algorithm 2 above is specified in the following question: What
is the probability that cs computed above is an e-center point?

We now introduce a notation which will be very useful in quantifying the quality of
the cs computed by Algorithm 2. Recall that ¢n(P) is the ratio in which hyperplane
h splits a point set P.

DEFINITION 5.1 (e-GOOD SAMPLE). Suppose P is a set of points in R%. § C P
is an e-good sample if for all hyperplanes h, |$1(S) — ¢n(P)| < €.

The following lemma shows the importance of the ¢-good sample in approximating
center points. Its proof is straightforward.

LEMMA 5.2. For each PC R, if SC P is an e-good sample, then each §-center
point of S is a (6 + €)-center point of P.

Now the question becomes: how often does a set of [randomly chosen points form

73

an e-good sample? This is not a trivial question, but was in fact answered by Vapnik
and Chervonenkis [80] (see [70] for a detailed proof).

THEOREM 5.3 (VAPNIK AND CHERVONENKIS). There is a constant ¢z depending
only on d such that for each 0 < € <1 and 1> 2/€*, if S is a set of | randomly chosen
points from P, then

—e2
Pr(S is an e-good sample] > 1 — gt

The Vapnik-Chervonenkis bound implies that we only need to sample about
O(dlog d) points to compute an approximate center point with high probability.

THEOREM 5.4. For all P € IR?, Algorithm 2 computes a (Mg + €)-center point of

P in
d, d 11?
O([glogz-l-]oga])

time, with probability at least 1 — 1, where A\g = d/(d + 1).

Notice that the computation above can be efficiently implemented in parallel. IL; »
T
5.2. Separators using sampling. We now incorporate random sampling into "
the partitioning algorithm for overlap graphs. e
i
Algorithm 3 (Fast Geometric Partitioning) ul?')
Input: (a neighborhood system I' and the geometric coordinates of its centers Al
P).
1. Choose a random sample P’ of size given by Theorem 5.4;
2. Let @ = ST(P');
3. Compute a é-center point ¢ of @ using the LP algorithm;
4. Compute the rotation 7y and the dilation 7, that conformally map ¢
to the origin;
5. Choose a random great circle GC of Ug;
6. Let S =[ST om0 ST om oS8T (GC);

7. Induce a vertex separator of G from S.

According to our experiments, about 80C points work very well for meshes in two
dimensions, and 1100 points work very well for meshes in three dimensions.

THEOREM 5.5. Algorithm 3 computes S in random constant time, and a verlex
separator of an overlap graph in random O(n) time. Using p processors, the time can
be reduced to n/p.

Algorithm 3 demonstrates the usefulness of geometry, sampling, and randomiza-
tion in mesh partitioning. The random sampling in the above algorithm reduces the
problem size and simultaneously guarantees a provably good approximation of the
larger problem. It is the underlying geometric structure that ensures the quality of
the partition.

i gy
L ¥ &
Lol |

o+ 4

LT i

74

5.3. A fast heuristic for center points. Although the sampling algorithm
(Algorithm 2) for center point (in fixed dimensions) is efficient from theoretical view-
point, it uses linear programming to solve the center point problem on a smaller
sample point set. The use of linear programming becomes a serious concern in prac-
tical implementation. For example, the experimental results show that the sampling
algorithm need to choose a sample of about five hundred to eight hundred points in

two dimensions. The sampling algorithm thus needs to solve (530) ~ 20 million

linear inequalities! Worse, the state-of-art linear programming algorithms (for fixed
dimensions) have a large constant. The sample size would be larger for higher di-
mensions. The seemingly efficient sampling algorithm is too expensive for practical
applications.

To overcome this difficulty, we have developed a heuristic for approximating center
points [55]. The heuristic uses randomization and runs in linear time in the number of
sample points. Most importantly, it does not use linear programming. Our algorithm
is based on the notion of a radon point. Let P be a set of points in IRY. A point
q € IR* is a radon point (18] if P can be partitioned into 2 disjoint subsets P, and
P, such that ¢ is a common point of the convex hull of P, and the convex hull of P,.
Such a partition is called a radon partition.

P
1
4 g
. q
4 2 2 P
F1G. 6. The radon point of four points in R®. When no point~g in the conver hull of the other

three (the left figure), then the radon point is the unique cross of lug linear segments. Otherwise
(the right figure), the point that is in the convez hull of the other ihree is a radon point.

5 5
X
i g
5 %
£

FIG. 7. The radon point of five points in R®. Two cases are similar to those in lwo dimensions.

The following theorem shows that if |P| > d+2, then a radon point always exists.
Moreover, it can be computed efficiently.

THEOREM 5.6 (RADON [18]). Let P be a set of points in IR%. If|P|>d+2,
then there is a partition (Py, P,) of P such that the conver hull of P, has a point in
common with the conver hull of P,.

Proof: Suppose P = {py,...,p,} with n > d + 2. Consider the system of d + 1
homogeneous linear equations

n mn

2 ai=0=3 ap} (1<j<d),

=1 =1

75

where p; = (p}, ..., p?) are the usual coordinates of in IR?. Since n > d + 2, the system
has a nontrivial solution (ai,...,a,). Let U be the set of all ¢ for which a; > 0,
and V the set for which a; < 0, and ¢ = ¥;ep i > 0. Then (U,V) is a partition
of P, and Tiey a; = —c and Yiep(0s/ps = Siev (i/c)pi. Let q = Sieu{as/cpi =

S iev(aife)pi. The point ¢ is simultaneously written as a convex combination of
points in U and a convex combination of points in V. Hence, g is in the convex hull
of U and the convex hull of V, completing the proof.]

To compute a radon point of P, we need only to compute a radon point for the

first d+2 points. It follows from the proof above that a radon point can be computed
in O(d®) time.

We now describe our heuristic for approximating center points.

Algorithm 4: (Fast Center Points)
Input:(a point set P C IR?)
1. Construct a complete balanced (d + 2)-way tree T of L leaves (for an
integer L);
9. For each leaf of T, choose a point from P uniformly at random, inde-
pendent of other leaves;
3. Evaluate tree T in a bottom-up fashion to assign a point in R? to
each internal node of T such that the point of each internal node is a
radon point of the points with its (d + 2) children;
4. Output the point associated with the root of T'.

A complete (d + 2)-way tree of L leaves has at most L/(d + 2) internal nodes.
Algorithm 4 takes O(d’L) time, with a small constant. Our experimental results
suggest that, independent of the size of the mesh, L = 900 is sufficient for meshes
from two dimensions and L = 1200 for meshes from three dimensions. Moreover,
about 10 to 30 tries give a small cost separator that approximately 0.52-splits a
mesh.

On the theoretical side, recently, Eppstein, Miller, Sturtivant, and Teng [23] gave
a proof that Algorithm 4 finds a (1 — 1/d?)-center point with high probability.

5.4. A practical algorithm for partitioning unstructured meshes. A fi-
nite element mesh is not given by a neighborhood system or an overlap graph. For-
tunately, our partitioning algorithms do not require such a neighborhood system
representation; only the proof does. To cope with the new setting, we show how to
adapt our partitioning algorithm.

LAl ...'

'iln'l"
H .

l..J

‘I

e Py
ek T
IR

L1

Y

wad

76

Algorithm 5 (Partitioning Finite Element Meshes)
Input: (the combinatorial structure of a mesh G, and the geometric coordi-
nates of the mesh zyz).

1. Choose a random sample P of size given by Theorem 5.4 from zyz;

2. Apply Algorithm 3 (Fast Geometric Partitioning) to compute a sep-
arating sphere S for P; In practice, we replace the LP algorithm of
Step 3 in Algorithm 3 by Algorithm 4, the Radon partition based fast
center point algorithm.

3. Partition G into two subgraphs G; and G, by removing the set of
edges E that cut this sphere. This set of edges can be found using
the structure of G; each vertex is placed into G; or G3, depending on
whether it is mapped to the interior or the exterior of S;

4. Compute the density a of the embedding given by (G, zyz). Then,
for each v that is an endpoint of an edge in E, find the ball centered
at v whose radius is given in the proof of Lemma 3.1. Use the rule
of overlap neighbors of Section 4.4 to compute a vertex separator of

(G, zyz).

However, in practice, we do not calculate the density of the embedding to compute
a vertex separator. We will use more direct and practical subroutines for finding a
vertex separator of (G, zyz) in the last step of the algorithm above. For example, a
faster way to compute a vertex separator is to put every vertex v in the interior or
exterior of S that is an endpoint of an edge in E, whichever has smaller cardinality,
into the separator. Notice that the degree of a density graph or a finite element graph
is bounded. So, this heuristic also finds a vertex separator that satisfies the separator
bound in Theorem 3.3. To compute the smallest vertexsseparator induced by S, we
can use the minimum bipartite vertex cover procedure (see Section 4.4). Although
the worst case time complexity of such a procedure is quite expensive, its expected
(average) time complexity is much lower, especially since in our case the bipartite
graph induced by E is much smaller than the original graph G.

Figure 8 shows the mesh of Figures 2 and 3 partitioned using our experimental
implementation [39] of Algorithm 5 recursively.

Our mesh partitioning algorithms first use the geometric information to compute
a continuous separator, then use the combinatorial structure to find a vertex separa-
tor. One major reason making the above partitioning algorithm suitable for efficient
practical implementation is the use of geometric sampling, a technique that reduces
the problem size and simultaneously guarantees a provably good approximation of
the larger problem.

6. Proof outline for the main separator theorem. We now outline the
proof of the Main Theorem 2.4, to show how to use geometric arguments to prove
separator properties for graphs embedded in fixed dimension. The detailed proofs
are presented in the companion paper [58]. In Section 6.1, we present a continuous
separator theorem, based on which we give a geometric method for proving a small
separator theorem in Section 6.2. We then apply this method to prove Theorem 2.4
in the remainder of this section.

LRI

'
Ilim||\.
L I
ST]

LY
-i,r:‘

FiG. 8. Recursive partilioning using Algorithm 5.

Lok
L F
L 1 1

v

w’

-

78

6.1. A continuous separator theorem. In the partitioning algorithms pre-
sented above, a “continuous” separator, in the form of a sphere, is computed first, and
then a “discrete” separator is deduced from its continuous counterpart. The quality
of the continuous separating sphere, in a strong sense, determines the quality of the
vertex separator.

Suppose f(z) is a real-valued nonnegative function defined on IR? such that fEis
integrable for all k =1,2,3,.... Such an f is called a cost function. The total volume
of the function f is defined as

Total-Volume(f) = j @) ()

Suppose S is a (d — 1)-sphere in IR®. The surface area of S is then
Areal(f,S) = [(F(0))"}(do)*-?
vES

Let m denote a map from IR? to Uy, which is formed by a stereographic projection,
followed by a rotation, followed by an inverse stereographic projection, followed by
a dilation, followed by a stereographic projection. Such a map is called an H-map.
Our partitioning algorithms compute an H-map, choose a random great circle, and
use the inverse of the H-map to transform the great circle to a sphere in IRY.

For each great circle GC of Uy, let Sgc be the sphere defined by 7Y (GC). Let
Cost(GC) = Area(f, Sac). Let Avg(f) be the average cost of all great circles of Uy.

We will use the following lemma, whose proof can be found in the companion paper
[58].

LEMMA 6.1. Suppose f is a cost function in RY. 'ﬁegﬂ
Avg(f) = O ((Total-Volume(f)) ‘7).

Consequently, we have the following continuous separator theorem.

THEOREM 6.2 (CONTINUOUS SEPARATOR). Suppose f is a cost function on IR?
and P is a set of n distinct points in R®. Let S be a sphere chosen by the random
process described in Algorithm 1. Then S (d + 1)/(d + 2)-splits P, and with high
probability,

Area(f,) = O ((Total-Volume(f)) 7" .

The splitting ratio of the separator in the theorem above is (d+1)/(d+2) instead
of d/(d+1). This is because points are mapped from IR? to the unit sphere in IR**!,
and the center of the unit sphere.is a (d + 1)-dimensional center point of the image
rather than a d-dimensional center point.

6.2. A new approach to proving small separator theorems. The contin-
uous separator theorem of the last section provides the following generic approach to
prove that a graph G embedded in IR® has an O(cl4~1)/4)-separator that (d+1)/(d+2)-
splits.

79

A Geometric Approach to Proving Small Separator Theorems
1. Define a real-valued function f based on the structure of G so that
Total-Volume(f) is bounded by a function ¢;
2. Find a (d — 1)-dimensional separating sphere S that (d+1)/(d + 2)-
splits the vertices of G and has Area(f,S) = O (c(d‘”"“‘), by Theorem
6.2.
3. Deduce a vertex separator of G from the separating sphere S.

In order to deduce a vertex separator from its continuous counterpart, the function
[must be faithful in the sense that the cost of a continuous separator models the
size of a vertex separator of the underlying graph. In other words, the continuous
function f faithfully encodes some combinatorial properties related to separators of
the underlying graph.

We will follow the basic steps above to prove Theorem 2.4. To this end, for each a-
overlap graph of a k-ply neighborhood system I' = { B, ..., B} in IR¢, we construct
a real-valued function f based on I' and prove that

Total-Volume(f) < O (asﬁ k@t n) :

then we show that from each separating sphere S we can deduce a vertex separator
of size linearly bounded by Area(f,S).

6.3. Local cost functions. Just as each overlap graph is defined from its neigh-
borhood system, Bi,..., Bn, the cost function f itself is defined from the local cost
functions, fi,..., fa, with f; based on B;.

Let P = {p,...,p.} be the set of centers of {Bi,..., B.}, and suppose that the
radius of B; is r;. We define f; as

fi(z) = { é‘/(?!ar,-) if z € (2a) - By, i.e,, [lz — pil] < 2ar;

otherwise

Intuitively, f; sets up a cost on each (d — 1)-sphere S such that the closer S is to
B;, the more B; contributes to the surface area of S. The function f; measures the
cost of a sphere passing through B; and its vicinity.

Notice that the function f; defined above has Total-Volume(f;) equal to Vi, the
volume of a unit ball in d dimensions.

6.4. Putting local cost functions together. Now we need to put the local
cost functions together into a global cost function. Perhaps the simplest way is to
take the sum, f = 3; f;. But this is not the best choice. To see this, just check the
extreme case where the neighborhood is a collection of n identical balls and & = 1. In
this case k = n. The total volume of the sum is n?V;, while we need a cost function
of total volume O (nd"(d‘l)) to establish Theorem 2.4.

To achieve a tight bound, we make use of the “slight” difference between the
various p-norms when applied to high-dimensional vectors. This is a technique that
appears to be new and is interesting in its own right. Recently, Mitchell and Vavasis

Ll
T L
Lad | 28

e

-

80

[61] used a cost function similar to ours to analyze their three dimensional mesh
generation algorithm.

Suppose ay,.. ., a, are reals. For each positive integer p, the L, normof ay,...,an,
denoted L,(ay,...,a,), is

B fifgosqif i (gw)%.

The following lemma states the relationship between different norms.
LEMMA 6.3. Letay,...,a, be real. Ifp < g, then Ly(ay,...,a,) > Ly(ay,...,a,).
Proof: See Hardy, Littlewood and Pélya [41] (pages 26 and 144). O

We define the global cost function of the overlap graph to be the Ly_; norm of
fl, v .,fn, i.e.,

f(l‘) = Ld—l(fh- . -sfn) - (i(fi(‘r))d_l)m *

=1
Notice that the Lg norm of f; is not a good choice, because its total volume is nV;

for all neighborhood systems. The following lemma, proved in [58], bounds the total
volume of the function f.

LEMMA 6.4. LetT' = {B,...,B,} be a k-ply neighborhood system in IRC. If
fi,-- -, fa are the local cost functions of ' and f is its global cost function, then

Total-Volume(f) = O(ar'd{_l k7T n).

S~
Consequently, by Theorem 6.2, we have the following lemma.

LEMMA 6.5. Suppose {By,...,B,} is a k-ply neighborhood system in IRY. Then
there ezists a ((d +1)/(d + 2))-splitting sphere S of {Bi,..., B,} with Area(f,S) =
0 ({ak”dn{d‘l};d), where £ = 24-1V,.

6.5. A vertex separator from a continuous one. Recall that a ball B; is an
overlap neighbor of a sphere S if one of the following conditions is true.

1. BinS # 0;
2.a-BiNS+#0and r; <r.

The number of overlap neighbors of S is called the overlap number of S, denoted
Jr(S). The following lemma bounds the overlap number 91(S) of a k-ply neighbor-
hood system in IR%.

LEMMA 6.6. Suppose I' = {B,,...,B,} is a k-ply neighborhood system in IR.
Let fi,..., fa be local cost functions defined for the a-overlap graph of T' and let
f=1Las(f1,-.., fn). For each (d — 1)-sphere S,

Ir(S) = O(a’k) + O(Area(f, 9)).
The constant in the big-O notation depends only on d.

Theorem 2.4 follows from Lemma 6.4, Theorem 6.2, and Lemma 6.6.

81

7. Final remarks. We have demonstrated that geometric structure is useful for
mesh partitioning. We have shown that geometric sampling can be used to reduce the
problem size, making our approach feasible for practical applications in large-scale
computation. We have implemented the random linear-time separator algorithm of
Section 6 [39] and have experimented with various examples. The numerical results
are encouraging. With the help of some heuristics to speed up the geometric transfor-
mation and the local optimization, the program is very fast. In practice, our program
generates partitions much better than what the theoretical results predict; the par-
titions are competitive with such previous methods as those based on an expensive
cigenvector computation [65].

Recently, Eppstein, Miller and Teng [24] have showed that a small separator for the
intersection graph of a k-ply neighborhood system can be in fact found in deterministic
linear time.

We conclude the paper with the following two open questions.

1. What is the computational complexity of deciding whether a graph G s
k-embeddable or (a, k)-embeddable?

2. Is there a polynomial time algorithm for computing the disk packing ol a
planar graph?

Acknowledgments. We would like to thank David Applegate, Marshall Bern, David
Eppstein, John Gilbert, Bruce Hendrickson, Ravi Kannan, Tom Leighton, Mike Luby,
Oded Schramm, Doug Tygar, and Kim Wagner for invaluable help and discussions.
We would like to thank John Gilbert especially for his editorial contribution which
greatly improved this paper.

REFERENCES

[1] A. Agrawal and P. Klein. Cutting down on fill using nested dissection: Provably good elimi-
nation orderings. In Sparse Malriz Computalions: Graph Theory Issues and Algorithms,
IMA Volumes in Mathematics and its Applications, (this book), A. George, J. Gilbert and
J. Liu, Springer-Verlag, New York. 1992.

[2] N. Alon, P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. In Proceed-
ings of the 22th Annual ACM Symposium on Theory of Computing, Maryland, May 1990.
ACM.

[3] E. M. Andreev. On convex polyhedra in Lobacevskii space. Math. USR Shornik, 10(3):413-440,
1970.

[4] E.M. Andreev. On convex polyhedra of finite volume in Lobacevskii space. Math. USR Sbornik,
12(2):270-259, 1970.

[5] M. J. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multipro-
cessors. [EEE Trans. Comp., C-36:570-580, 1987.

[6] M. Bern, D. Eppstein and J. R. Gilbert. Provably good mesh generation. In 31st Annual
Symposium on Foundalions of Computer Science, IEEE, 231-241, 1990, (to appear JCSS).

[7] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Compuling in
Euclidean Geometry, F. K. Hwang and D.-Z. Du editors, World Scientific, 1992.

[8] G. Birkhoff and A. George. Elimination by nested dissection. Complezily of Sequential and
Parallel Numerical Algorithms, J. F. Traub, Academic Press, 1973.

[9] P. E. Bjorstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on
regions partitioned into substructures. SIAM J. Numer. Anal., 23:1097-1120, 1986.

1 g
-
AL :\

™

L
i

90 4
gk P
LAR 1 RS

[T XN

e |

o

82

(10] G.E. Blelloch. Vector Models for Data-Parallel Computing. MIT-Press, Cambridge MA, 1990.

(11] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on
regions partitioned into substructures, Math. Comp. 46:361-9, 1986.

[12] D. Calahan. Parallel solution of sparse simultaneous linear equations. in Proceedings of the
11th Annual Allerton Conference on Circuils and Systems Theory, 729-735, 1973.

(13] T. F. Chan and D. C. Resasco. A framework for the analysis and construction of -domain
decomposition preconditioners. UCLA-CAM-87-09, 1987.

[14] L. P. Chew. Guaranteed quality triangular meshes, Department of Computer Science, Cornell
University TR 89-893, 1989.

[15] K. Clarkson. Fast algorithm for the all-nearest-neighbors problem. In the 24th Annual Sym-
posium on Foundations of Computer Science, 226-232, 1983.

[16] R. Cole, M. Sharir and C. K. Yap. On k-hulls and related problems. SIAM J. Computing, 61,
1987.

(17] J. H. Conway, and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag,
1988.

[18] L. Danzer, J. Fonlupt and V. Klee. Helly’s theorem and its relatives. Proceedings of Symposia
in Pure Mathematics, American Mathematical Society, 7: 101-180, 1963.

[19] H. N. Djidjev. On the problem of partitioning planar graphs. SIAM J. Alg. Disc. Math.,
3(2):229-240, June 1982.

[20] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian J. Math. 10,
pp 517-534, 1958.

[21] 1. S. Duff. Parallel implementation of multifrontal schemes. Parallel Compuling, 3, 193-204,
1986.

[22] M. E. Dyer. On a multidimensional search procedure and its application to the Euclidean
one-centre problem. SIAM Journal on Computing 13, pp 31-45, 1984.

(23] D. Eppstein, G. L. Miller, C. Sturtivant and S.-H. Teng. Approximating center points with and
without linear programming. Manuscript, Massachusetts Institute of Technology, 1992.

[24] D. Eppstein, G. L. Miller and S.-H. Teng. A deterministic linear time algorithm for geometric
separators and its applications. Manuscript, Xerox Palo Alto Research Center, 1991.

[25] L. Féry. On straight line representing of planar graphs. Acta. Sci. Math. 24: 229-233, 1948.

[26] R. W. Floyd and R. L. Rivest. Expected time bounds for selection. CACM 18(3): 165-173,
March, 1975.

[27] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings of planar
graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
426-433, 1988.

[28] G. N. Fredrickson and R. Janardan. Separator-based strategies for efficient message routing.
In 27st Annual Symposium on Foundation of Computation Science, [EEE, 428-237, 1986.

[29] I. Fried. Condition of finite element matrices generated from nonuniform meshes. ATAA J. 10,
pp 219-221, 1972.

[30] A. M. Frieze, G. L. Miller and S.-H. Teng. Separator based divide and conquer in compu-
tational geometry. Proceedings of the 1992 ACM Symposium on Parallel Algorithms and
Architectures, 1992.

[31] H. Gazit. An improved algorithm for separating a planar graph. Manuscript, Department of
Computer Science, University of Southern California, 1986.

[32] H. Gazit and G. L. Miller. A parallel algorithm for finding a separator in planar graphs. In 28st
Annual Symposium on Foundation of Computation Science, IEEE, 238-248, Los Angeles,
October 1987.

[33] H. Gazit. A deterministic parallel algorithm for planar graph isomorphism. In 92nd Annual
Symposium on Foundations of Compuler Science, IEEE, to appear, 1991.

[34] J. A. George. Nested dissection of a regular finite element mesh. STAM J. Numerical Analystis,
10: 345-363, 1973.

[35] A. George, M. T. Heath, J. Liu, E. Ng. Sparse Cholesky factorization on a local-memory
multiprocessor. STAM J. on Scientific and Statistical Computing, 9, 327-340, 1988.

[36] J. A. George and J. W. H. Liu. An automatic nested dissection algorithm for irregular finite
element problems. SIAM J. on Numerical Analysis, 15, 1053-1069, 1978.

[37)
[38]
(30)
[40]
fa1]
j42)
43)
[44]
5]

[46]

(7]
48]
[49)
[50]
51)
[52)
(53]
[54)
[55]
[56]
57)
/58]

[59]

[60]

[61]

83

J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Posilive Definite Systems.
Prentice-Hall, 1981.

J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded
genus. J. Algorithms, 5 pp391-407, 1984.

J.R. Gilbert, G.L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation and
experiments. Technical Report, Xerox Palo Alto Research Center, to appear, 1992.

J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm. Numerische
Mathematik, 50(4):377-404, 1987.

G. Hardy, J. E. Littlewood and G. Pélya. Inequalities. Second edition, Cambridge University
Press, 1952.

D. Haussler and E. Welzl. e-net and simplex range queries. Discrete €& Compulational Geometry,
2: 127-151, 1987.

J. P. Hutchinson and G. L. Miller. On deleting vertices to make a graph of positive genus
planar. In Discrete Algorithms and Complezily Theory - Proceedings of the Japan-US Joini
Seminar, Kyoto, Japan, pages 81-98, Boston, 1986. Academic Press.

C. Jordan. Sur les assemblages de lignes. Journal Reine Angew. Math, 70:185-190, 1869.

F. T. Leighton. Complerity Issues in VLSI. Foundations of Computing. MIT Press, Cambridge,
MA, 1983.

F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms. In 29th Annual
Symposium on Foundations of Compuler Science, pp 422-431, 1988.

C. E. Leiserson. Area Efficient VLSI Computation. Foundations of Computing. MIT Press,
Cambridge, MA, 1983.

C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. in 3rd
SIAM Conference on Parallel Processing for Scientific Computing, 1987.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. on
Numerical Analysis, 16:346-358, 1979.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. of Appl.
Math., 36:177-189, April 1979.

R. J. Lipton and R. E. Tarjan. Applications of planar separator theorem. SIAM J. Comput,
9(3): 615-627, August 1981.

J. W. H. Liu. The solution of mesh equations on a parallel computer. in 2nd Langley Conference
on Scientific Computing, 1974.

N. Megiddo. Linear programming in linear time when the dimension is fixed. SIAM Journal
on Computing 12, pp 759-776, 1983.

G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal of
Computer and System Sciences, 32(3):265-279, June 1986.

G. L. Miller and S.-H. Teng. Centerpoints and point divisions. Manuscript, School of Computer
Science, Carnegie Mellon University, 1990.

G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach to graph separators.
In 32nd Annual Symposium on Foundations of Computer Science, IEEE, pp538-547, 1991.

G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis. Separators for sphere-packings and
nearest neighborhood graphs. in progress 1992.

G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis. Finite element meshes and geometric
separators. in progress 1992.

G. L Miller and W. Thurston. Separators in two and three dimensions. In Proceedings of the
22th Annual ACM Symposium on Theory of Compuling, pages 300-309, Maryland, May
1990. ACM.

G. L. Miller and S. A. Vavasis. Density graphs and separators. In Second Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 331-336, San Francisco, January 1991.
ACM-SIAM.

S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc. ACM
Symposium on Computational Geometry, pp 212-221, 1992,

Lo 1 15

LR
b |l
romg
o

|
I

- .,

(68]
(69]
[70]
[71]
[72]

[73]
[74]

[75]
[76]
[77]
(78]
[79]
(80]
(81]
[82]
(83]

(84]

84

M. S. Paterson. Tape bounds for time-bounded Turing machines. J. Comp. Syst. Sci., 6:116—
124, 1972.

V. Pan and J. Reif. Efficient parallel solution of linear systems. In Proceedings of the 17lh
Annual ACM Sympostum on Theory of Computing, pages 143-152, Providence, RI, May
1985. ACM.

A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM
Transactions on Mathematical Software 16 (4), pp 303-324, 1990.

A. Pothen, H. D. Simon, K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matriz Anal. Appl. 11 (3), pp 430-452, July, 1990.

J. H. Reif and S. Sen. Polling: A new randomized sampling technique for computational
geometry. In Proceedings of the 21st annual ACM Symposium on Theory of Computing.
394-404, 1989.

E. Schwabe, G. Blelloch, A. Feldmann, O. Ghattas, J. Gilbert, G. Miller, D. O’Hallaron, J.
Schewchuk and S.-H. Teng. A separator-based framework for automated partitioning and
mapping of parallel algorithms in scientific computing. In First Annual Dartmouth Summer
Institute on Issues and Obstacles in the Practical Implementation of Parallel Algorithms
and the use of Parallel Machines, 1992.

H. D. Simon. Partitioning of unstructured problems for parallel processing. Compuling Systems
wm Engineering 2:(2/3), ppl35-148.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method, Prentice-Hall, 1973.

S.-H. Teng. Points, Spheres, and Separators: A Unified Geometric Approach to Graph Parti-
tioning. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
1991. CMU-CS-91-184.

C. Thomassen. Planarity and duality of finite and infinite graphs. Journal of Combinatorial
Theory, Series B, 29: 244-271, 1980.

J. F. Thompson, Z. U. A. Warsi and C. W. Mastin. Numerical Grid Generation: Foundalions
and Applications. New York, North Holland, 1985.

W. P. Thurston. The geomeiry and topology of 3-manifolds. Princeton University Notes, 1988.

W. T. Tutte. Convex representations of graphs. Proc. London Math. Soc. 10(3): 304-320,
1960. %

W. T. Tutte. How to draw a graph. Proc. London Math. Soc. 13(3): 743-768, 1963.

J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville MD, 1984.

P. Ungar. A theorem on planar graphs. Journal London Math Soc. 26 256-262, 1951.

P. M. Vaidya. Constructing provably good cheap preconditioners for certain symmetric positive
definite matrices. IMA Workshop on Sparse Matriz Computation: Graph Theory Issues
and Algorithms, Minneapolis, Minnesota, October 1991.

L. G. Valiant. Universality consideration in VLSI circuits. JEEE Transaction on Computers,
30(2): 135-140, February, 1981.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory Probab. Appl., 16: 264-280, 1971.

S. A. Vavasis. Automatic domain partitioning in three dimensions. STAM J. Sei. Stat. Comp.,
12 (1991) 950-970.

R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Technical Report, California Institute of Technology, 1990.

F.-F. Yao. A 3-space partition and its application. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, ACM, 258-263, 1983.

E. E. Zmijewski. Sparse Cholesky Factorization on a Multiprocessor. PhD thesis, Department
of Computer Science, Cornell University, 1987.

