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Abstract: The purpose of this paper is to present
new upper bounds on the complexity of algorithms
for testing the primality of a number. The first
upper bound is O(n1 }; it improves the previously
best known bound of 0(nl/%4) due to Pollard [11].

The second upper bound is dependent on the
Fxtended Riemann Hypothesis (ERH): assuming ERH,
we produce an algorithm which tests primality and
runs in time 0((log n)%) steps. Thus we show that
primality is testable in time a polynomial in the
length of the binary representation of a number.

Finally, we give a partial solutiom to the
relationship between the complexity of computing
the prime factorization of a number, computing the
Euler phi function, and computing other related
functions.

Notations. We will assume that n, the number to
be factored or tested for primality, is an odd
positive integer. We let p, q vary over odd
primes, and (a,b) denote the greatest common
divisor of a and b. Let |n| denote the length of
the binary representation of n, i.e. |n| = %1032n1.
The number of 2's in n will be denoted by f#o(n),
i.e. #5(n) = max{k:2k1n}. And finally, by a
computation step we mean a deterministic Turing
machine transition.

pDefinition. We say an algorithm tests primality in

0(f(n)) steps i1f on input a binary number n the
algorithm correctly indicates whether n is prime or
composite in less than k-f(n) steps, for some con-
stant k.

Theorem 1. There exists an algorithm which tests

primality in 0(n-l34) steps.

1f we then assume the Extended Riemann's Hy-
pothesis (see appendix), Theorem 1 can be vastly
improved:

Theorem 2 (ERH). There exists an alTorithm which

tests primality in 0(|n|% log log |n|) steps.
Neither of the algorithms produced in Theorems
1 or 2 necessarily finds divisors of composite num-—
bers. They only indicate that the number is com-—
posite, in general. The problem of finding a
divisor of a composite number or the more general
problem of producing the prime factorization of a
number seems more difficult. Daniel Shanks in [13]

produces ¥e>0 an algorithm which factors a number
in D(n(1f4)+€) steps.

Following the definition of set reducibility
of Cook [6] and Karp [8] we define functional
reducibility:

Definition. Given functions f and g we say that
f is polynomial time reducible to g denoted £ 3 g,
if there exists a Turing machine which on inpugs n
and g(n) computes f(n) in D(ln] ) steps for some

constant k. We say f is polynomial time equivalent
p

to g if £ > E and B f, and denote this relation

by £ g g.

Definition. Let n = p{l...p;m be the prime factor-
ization of the odd number n. We let '"prime factor-
ization" denote the function from the natural num-
bers to some fixed appropriate coding of the prime
factors and their exponents. We also consider the
following three functions:

i) 4(n) = pgl_l(pl—l)...p;m_l(pmﬂl) (Euler's
¢-function),

ii) A(n) = lcm{p{lﬁl(p —l),...,p;m_l(pm—l)}
(The Carmichael A~ unction),

iii) A'(n) = lcm{pl—l,...,pm—l}.

By the definition of Euler's ¢—function we see
that ¢ = "prime factorization." Since lem(a,b) =
a~b!(a,g) we see that A and A\' are both polynomial
time reducible to '"prime factorization,”" i.e. A,

AT % p "prime factorization." As a by-product of
our work on Theorem 2 we get:

Theorem 3 (ERH). The functions ¢, A, A" and "prime
factorization' are all polynomial time equivalent,

" 3 "o = = 1
i.e. "prime factorization ? ) ) X P at.

The difficult step in the proof of the above
three theorems is demonstrating that there 1s a
"emall" quadratic nonresidue. In Theorem 1 we
appeal to the work of Burgess who uses Weil's proof
of Riemann Hypothesis over finite fields, while in
Theorems 2 and 3 we use Ankeny's reduction of the
size of the first quadratic nonresidue to the
Extended Riemann's Hypothesis,

Motivation of Proofs

Fermat proved that for p prime

apﬂl =1 mod p if (a,p) = 1 .



Therefore, if for some a, 1 < a < n,

2% § svsaaog 1)
then n must be composite. Now, a™ mod n can be
computed in 0(|m|M(|n|)) steps (where M(|nl) de-
notes the cost of multiplying two numbers of length
|n|) using standard techniques described in [7].

A possible technique for recognizing composite num-
bers might be to systematically search for an a
satisfying (1). This technique could fail for
composite n for two reasons:

a)
Fermat's Congruence.

There could be composite n which satisfies
That is,
an_l 2 1 mod n for all (a,n) =1 .

b) The first a satisfying (1) could be very
large which would give us an inefficient method.

The rest of the paper will be devoted to
handling these two problems. We start by showing
that in fact some composite numbers do satisfy
Fermat's Congruence.

Theorem 4 (Carmichael) [5]. n satisfies Fermat's
Congruence if and only if A(n)]n—l.

For example, the composite number 561 = 3.11:17 is
such that A(n) = lem(2,10,16) = 80, and 80 divides
560. Tt follows that (a,561) = 1 implies a360 = 1
mod 561 for all natural numbers a. Thus there are
composite numbers which satisfy Fermat's Congru-
ence. At first these numbers seem more difficult
to recognize as composite. Not only will we
recognize them as composite, but we will quickly
find a divisor. By what we have done it would seem
that the obvious approach would be to use Fermat's
test to recognize composite n such that R(n)*n—l
and some other test for m such that A(n)|n-1.
Instead we shall separate the composite number into
sets according to whether A‘(n)In—l or A'(n}|n—l.

Since the algorithms used in Theorems 1 and 2
are essentially the same we shall define the fol-
lowing class of algorithms:

Definition of Af., Let £ be a computible function
on the natural numbers. We define Ay on input n
as follows:

1) Check if n is a perfect power, i.e. n=mS
where s > 2. If n is a perfect power then output
"composite" and halt,

2) Carry out steps i) - iii) for each
a < f(n). If at any stage i), ii) or iii) holds
output "composite" and halt:
i) ain
ii) an-1 # 1 mod n
iii) ((a(“‘l)xzkmod n) - 1, n) # 1 for

some k, 1 < k < #5(n-1).

3) Output "prime" and halt.

Note. Af as defined above is a simplified version
of the algorithm needed to get Theorem 2. Af will
give an algorithm for testing primality in :
0(|n|310g?|n|) steps.

Before we prove Theorems 1 and 2 we must de-
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velop the technical hardware to define f and
to show that there is an a < f(n) which
"works''.

We start by considering those composite num-
bers n which satisfy A'(n)fn—l. In the following
lemma we give a characterization of some of the a's
which satisfy af~l # 1 mod n.

Lemma 1. If l'(n)[n—l then there exist primes p
and q so that:

1) p|n,p-1/n-1,q®|p-1, and q®n-1 for some
integer m > 1.

2) If a is any gq-th nonresidue mod p then
an-1 1 mod n.

See Appendi# for definition of g-th nonresi-
due mod p and definition of index of a mod p which
we will denote by inpa.

Proof. Let qQ1seeesly be the distinct prime divi-
sors of n, Thus A'(n) = lcm[ql—l,...,qn—l}*n-l
which implies qi-lfn-l for some i. By setting

P = q4 we have p[n and p—lfn—l. Since p-l*n—l,
there must exist a prime g and an integer m > 1 so
that qM|p-1 and qm*n"l. Thus p and q satisfy
condition 1). We next show that p,q satisfy con-
dition 2).

If a and n are not relatively prime then
am ¥ 1 mod n for any m # 0; thus a1l % 1 mod n.

So we can assume (a,n) = 1. Suppose the lemma is
false, i.e. a1 = 1 mod n. Since p|n we have
an_l =1 mod p . (2)
Let b be a generator mod p then by (2) we have
ind -1
b( Pa)(n ) = 1 mod p. Since b™ = 1 mod p
implies p—1|m we have
p~1|(indpa)(n—1) 5 (3)

Now a is a g-th nonresidue implies qundpa. Thus

qzindpa and qm1p—l @ (4)

Applying (4) to (3) gives qm]n—l which is a con-
tradiction. q

Lemma 1 motivates the definition of the first
q-th nonresidue mod p.

Definition. Let N(p,q) be the least a so that a is
a q-th nonresidue mod p defined only when q]p-l.
Using index arguments it is not hard to show that
N(p,q) is prime.
Theorem (Ankeny) [1] (ERH). N(p,q) = 0(|p|?)
Using Ankeny's Theorem and Lemma 1 we have
that if X'(n)[n-1 then there exists an a < 0(|n[2)
such that ah~ $ 1 mod n.

We now return to a discussion of composite
numbers n which have the property that A‘(n)[n—l.
Let gy,...,qy be the distinct prime divisors of n;
then by the definition of ' we know that
#2(1'(n)) = max(#2(q1-1),..,,#2(qp-1)). Thus for
some 1 < i < m, #2(1"(n)) = #;(q3-1). We next make
a distinction between two types of numbers as




follows:

Definition. Let qj,...,qy be the distinct prime
divisors of n. We say n 1is of type A if for some
1<j=<m #("(n)) > #3(q5-1). On the other
hand, we say n is of type B if #5(A'(n)) =

= #5(a1-1) = #3(ag-1)-

Digressing for a moment to motivate the next
three lemmas, suppose we have a composite number
n = pq. Suppose further that we have a number m so
that
m=1mod q and m = -1 mod p . (5)
The first of the restrictions in (5) implies
q|m-1 and the second implies m 3 1 mod n. Thus
q = (m-1,n). If we could quickly compute some m
satisfying (5), we would quickly know a divisor of
n. In the following lemmas we develop a method
for finding m satisfying (5). We say b has a non-
trivial GCD with n if (b,n) # 1 or n.

Lemma 2A. Let n be a composite number of type A
where, say, p and q|n, and (A" (n)) = #5(p-1) >
#z(q—l). Assume further that 0 < a < n is so that
G%) = -1 where (EJ is the Jacobi symbol (cf. ap-
pendix), then eigher a or (al'(n)fzmod n) - 1 has
a nontrivial GCD with n.

Since

Proof. Suppose a has a trivial GCD with n.
1 <a<n it must be that (a,n) = 1. Since
q-1|2"(n) and #5(q-1) < #5(A"(n)), we have
1
q#1|1—é3— , thus
T
at (n)/2 = 1lmod q . (1)
Since (a*'(n)/2)2 = 1 mod p then a)'(n)/2 = 11

mod p. Suppose ar' (0)/2 = 1 mod p then p—1|(indpa)

T
Gi—égl) which implies that ind,a is even. On the
other hand, (%J = -1 implies indpa is odd (see

appendix). So
L}
a)l (n)/2 = -1l mod p . (2)
By (1), q}(a*'(n)/z mod n) -~ 1. By (2),
p*{a* (n)'Z mod n) — 1 since p is an odd prime.
Thus ((a*' (@)/2 mod n) - 1,n) # 1,n. a
Lemma 2B. Let n be a composite number with at

least two distinct prime divisors, say p and q.
Further suppose n is of type B and 1 < a < n is so
that (3) = -1. Then, either a or (aX'(n)/2

mod n) - 1 has a nontrivial divisor with n.

Proof. As in the proof of Lemma 2A we assume that
a has a trivial GCD with n, thus (a,n) = 1. With-
out loss of generality we assume that Cﬁ) = =1 and
El-) = 1. Using techniques similar to above we
show a*'(n)/2 = -1 mod p and ar'(0)/2 = 1 mod q.
The rest of the argument follows from the above
proof. H

Lemma 3. 1If p]n, A'(n)|m, and k = #2[3'? i] +1
B )\v(n) 211 e 3

then a 2 = azk mod p.

Proof. Since at' (M= 1 mod p it follows that
ah (n)/2 = +1 mod p. We consider the two possible
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values of at'(n)/2 separately:

1) 1f a*'()/2 = 1 nod p then a®/2F = 1 mod p,
since by our cho%q f k and the fact that
A'(n) |m we have —;ﬁ-%}-_ :

2) 1f, on the other hand, ar'(m)/2 = 1 pod P
we note that:

m A" (n) _____EE_I
-ZE ) T)l (n) 2K~

m
31 (n) 9k—L

- = (a - (-l)l (n)2

mod p. Since m/l‘(n)zk"l is odd, amfzk =

-1 mod p.

Using Lemmas 2A and 3 we see that: 1if n is a
type A composite number, K'}n)]n—l, and a = N(p,2)
then either a!n or ((a(@=1)/2 pod n)-1,n) # 1,n.
For type B numbers we will need the following
definition,

Definition. Let N(pq) be the minimum a so that
C%E) # 1 where (éa) is the Jacobi symbol and N(pq)
is‘defined only ghen p # q. Note again that N(pq)
is prime,
Theorem (Ankeny) [1] (ERH). N(pq) = 0(|pq|?)
Ankeny doesn't actually state the case N(pq)
but it follows without any change in his argument.
We only need to use the stronger form of Selberg's
Theorem 6 [12] referred to as Lemma 2(c) in [1].
Also see [10] for the statement and proof of
Ankeny's theorem,

Proof of Theorem 2 (weak form). By Theorems of
Ankeny we can pick an integer ¢ > 1 so that

N(p,q) < c|p|2 and N(pq) < c|pq|?

Consider Af where f(n) = c|n|2.

Analysis of Running Time

1) Af must first check to see if n is a
perfect power which will take 0(|n!3) steps.
leave it to the reader to verify this bound.

2) Ag must check i), ii) and iii) for f(n)
different a's.

We

Check i) takes say 0(|n|2) steps.
Check ii) takes O(|n|M(|n|)) steps

Check 1ii) takes 0((|n|M(|n|)+|n[2)|n|) steps
since GCD can be computed in 0(|n]2) steps, see

[7], and 1 < k < |n|. Now multiplication takes at
least |n| steps thus check iii) takes at most
0(|n|24(|n|)) steps.

So Af runs in 0(|ni4M(|n1)) steps. If we use
the Schonhage-Strassen algorithm ([14]) for multi-
?lying binary numbers M(Tn|) = 0(}n log|n|log log
|n|) and we have 0(]nl5log!n|log log steps.

n)

Proof of Correctness of Af

If n is prime Af will indicate correctly that
n is prime so we need only show that Agf recognizes
composite n, If n is composite n it will fall in-
to one of the following three cases.

1) n is a prime power.



2) 2'(n))n-1

3) A'(n) |n-1 and n is not a prime power.

Case 1. If n is a prime power then n is a perfect
power and in this case Af will indicate that Ag is
composite.

Case 2. If A'(n)ln-l then by Lemma 1 we have a p
and q such that if a = N(p,q) then an-l %1 mod n.
Thus we need only note that N(p,q) < f(n), which
follows by our choice of f.

Case 3.

A) Suppose n is of type A then by Lemmas 24
and 3 we can choose p and k (k < #z(n-l)} sgch that
if a = N(p,2) then either aln or ((a(n-1)/2K 54 p)
-1,n) # 1,n. Since N(p,2) < f(n), n will be reec-
ognized as composite by either step i) or ii).

B) Suppose n is of type B then by Lemmas 2B
and 3 and the assumption that n is not a perfect

If A'(n)|n-1 and n is not a perfect power:

power. We can choose p, g and k < #z(n—l% so that
if a = N(pq) then either aEn or ((a(n'l)/ k nod n)
-1,n) # 1l,n. Since N(pg) < f(n), &f will indicate
that n is composite. "

To prove Theorem 1 we need the following
results of Burgess.

lheorem (Burgess) [2,3,5]
Nep,) = 0(p (/4%

N(pq) = 0({pq)

any € > 0
7=

1/4 e)+e) angse » B
’roof of Theorem 1. By the Theorem of Burgess we
:an pick an integer ¢ > 1 so that

1/4V2.71

1/4¢7,71

N(p,q) < ecp and N(pq) < e(pq)

1
et L = 4Y2.71 . Consider Ag where f£(n) = [en%T1|
:[En' Since Af runs in 0(n-13%) steps we

eed only show that Ag tests primality. If n is
rime then Af will indicate that n is prime.

Suppose that n is composite. Then n must lie
n at least one of the following four cases.

ase 1. n is a prime power.
ase 2. n has a divisor < f(n).
ase 3. A'(n)fn-l, n has no divisor < f(n).

By Lemma 1 there exist primes p, q such that
£ a=1N(p,q) then a1 # 1 mod n. So we need

nly show that a = W(p,q) < £(n). We have
a < [ept/¥] (5)
rom above. Since n is composite and for all
< f(n)a*(n), we have
n . 1 4/ (e+1)
P = f(n) i.e. p = [-En .I . (6)

ibstituting (6) into (5) we have
__{hlf(£+l)1 < f(n) since ¢ > 1 .

1se 4. A'(n)|n~l and n has no divisor < f(n) and

n is not a prime power.

A) Suppose n is of type A. Then as in Case
3A of Theorem 1 we need only show a = N(p,2) < f(mn)
where p[n. Since in this case (5) and (6) hold we
get a < f(n).

B) Suppose n is of type B. Since n is not a
prime power n has at least two distinct prime
divisors, say p, q. We need to show that N(pq) <

f(n) which will follow if we show pq z f%ﬁf q

Claim. n # pq (see [5]).

Suppose n = pq where p < q. Now gq-1|pq-1,
since l’(n)|nrl. But this implies q-1|p-1. Hence
q < p which contradicts the assumption that p < q.

By claim n =
have r > £(n).

pqr where r # 1, Since r|n we
o Sy =4
Thus pq < (o)

Before we prove the stronger form of Theorem
2 as stated in the introduction we prove Theorem
3. To prove Theorem 3 we will need the following
lemma:
Lemma 4 (ERH). Let g be any function such that

1) A'(n) |gn)

2) lg)]| = 0(1n|k) for some constant k.
Then "prime factorization" < g,

Proof.
m.

Consider the following procedure on n and

1) Check if n is a perfect power.

2) Carry out steps i) and ii) for each
a < f(n) (where f is as in the proof of Theorem 1):

i) a|n

ii) ((am/Zk mod n)-1,n) # 1 for some
a< k=< #m.

If A'(n) /m then we know by arguments similar
to Case 3 of the proof of Theorem 2 that this
procedure will produce a divisor of n if n is
composite. If we set m = g(n) then in 0(|g(n) |
[n]3M(|n|)) steps we will either know that n is
prime or that n' is a divisor of n, for some n'.
If in the above procedure we replace n by n' then
l%ﬂ)hm)shwrﬂhimﬂﬁsl%ﬂ)h%ﬂ. Thus
in 0(|g(n)||n'|3M(n')) steps we will either know
n' is prime or n" is a factor of n'. Iterating
this procedure at most |n| times we will have all
prime factors of n. Thus, we get a prime factori-
zation of n in 0(|g(n)||n|%M(|n|)) steps. Since
[g@)]| = 0(|n|%) it runs in O(|n|ktu(|n]))
steps. "

Proof of Theorem 3. By the discussion preceding
Theorem 3 we know that ¢, A, X' < p "prime factor-

ization". Since ¢, A and A' satisfy Lemma & we
have "prime factorization™ < ¢, A, A'. Thus
Theorem 3 follows, P o

Modification to Algorithm Af

First note that a in step 2) of Af need not
vary over all numbers < f(n) but only prime numbers

< £(n). Since the number of prime < f(n) is
OGﬂ—ELEA——), by the prime number theorem, we have
log f£(n)




the upper bound for Theorem 2 of 0([n\5log 10g|n1)
steps.

We amend step 2) in Af as follows:

2) Compute Pj,.-:sPpy where pj is the i-th
prime number and m is so that py < £(n) < Ppt1-
Compute Q, S so that n-1 = QZS and Q is odd. Let
i =1 and proceed to ii) (let a demote pj through-
out).

i) If 1 <m set i to i+1. If i = m then out-
put "prime" and halt.

ii) If a]n then output "composite'' and halt.
Compute aQ mod n, aQ2 mod < e aQ2" mod n.

iii) If aQZS mod n # 1 then output '"composite”
and halt.

iv) If aQ mod n =1 go to i).
: aQZJ mod n # 1).
v) If aQZJ mod n =n- 1 go to i).

Set J = max(J

vi) Output "composite' and halt.

The running time Af is D(|n|4log log|n|). To
show that Ag tests primality we need only reconsid-
er Case 3:

Case 3. A'"(n)|n-1 and n is not a prime power.

A) Suppose n is of type A with #a(A"(n)) =
#2(p-1) > #2(q-1) and p,q|n. Let a = N(p,2) (thus
a is prime). Thus we need only show that either
step ii), iii) or vi) outputs "composite' for this
a. So suppose afn and a?~l = 1 mod n. We show
that Ag reaches step vi). If aS = 1 mod p then
2|5, since (&) = -1 and p is odd. Since pln we
have aQ # 1 mod n. Thus Ag will reach step ).

By Lemggﬁ 2A and 3, we know there exists a k so

4 =

that = 1 mod q and aQ2% = -1 mod p. Suppose
aQ2y = -1 ﬁod n then aQ2°” = -1 mod p and q. Now
aQ2¥ = aQ2Y = -1 mod p implies k = J. On the other
hand , aQ2K = 1 mod g and aQ2” = -1 mod q implies

k > J. Thus by contradiction aQ2” # -1 mod n.
Hence Af reaches step vi).

B) Suppose n is of type B. The proof in this
case follows the argument in Case A.

Appendix

Let Z, denote the ring of integers mod n.
Let zX denote the integers relatively prime to n
under multiplication mod n. Z§ is a group and if
p is a prime then 2% is a cyclic group of order
p-1. Thus, the only solutions to the equation
x2 = 1 mod p are t1. We may pick a generator of
the cyclic group z¥*, say b, then we define
indpa = minf{m: b™ = a mod p}. We note that indpa
is dependent on our choice of a generator. We say
a is a q-th residue mod p if there exists b
(b9 = a mod p).

Note. 1If p, q are primes and q|p-1 then a is a
g-th residue mod p if and only if qlindpa.
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Definition. The Legendre symbol Q%) is defined by:

1 if a is a quadratic residue mod p

and (a,p) = 1;
&) = {-1 if a 1is a quadratic nonresidue mod p
P and (a,p) = 1;

0 if (a,p) # 1.
The Jacobi symbol c%aa is defined by:
a .y _ 3y, &
E =@ - @
where (%J and (%) are the Legendre symbols.
The above two symbols for fixed denominators
define functions which fall into a general class of

functions called characters. We define one more
character as follows:

e(2mi(indpa)/q) if (a,p) =1
x(a) = {

if (a,p) #1

where q|p-1 and e( ) is the exponential function.

Dirichlet's L functions are defined by:

LS,x) = I x(m)/n°
n-1

where y 1s a character.

Extended Riemann's Hypothesis (ERH). The zeros of
L(S,x) in the critical strip, O < (real parf of §)
< 1 all lie om the line (real part of S) = 7, where
¥ is any of the three characters above,
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