
Accelerates In-Memory Databases with Near Data Computing

Kevin Hsieh
kevinhsieh@cmu.edu

Amirali Boroumand
aborouma@andrew.cmu.edu

1. Problem and Motivation

Modern databases, such as H-Store[14], VoltDB[23], and
Masstree[20], have been moving from disk to main memory
because cheaper commodity DRAMs are orders of magnitude
faster. Furthermore, DRAM-based key-value storage servers,
such as memcached[9] and Redis[22], have been known as
critical parts of major Internet services.

All the paradigm shifts from disks to DRAMs have made
the bandwidth and latency of DRAMs, or memory wall[26],
become the emerging bottleneck of data centers. Conventional
databases are known to spend at least 50% of their execution
time on memory stalls[3]. This problem is getting worse for
in-memory databases. For example, the profiling of Masstree
showed that the get operations spend 66%-75% of time on
DRAM stalls[20].

While DRAMs have kept the scaling of cost-per-bit, their
latency has remained almost constant[18]. In addition, many
studies showed that DRAM systems accounts for 25-40% of
total power consumption in data centers[4][19]. A promising
technology to tackle these challenges is 3D-stacked mem-
ory, such as Hybrid Memory Cube (HMC) [13]. By stack-
ing DRAM and logic dies with through-silicon vias (TSVs),
this technology revives the idea of processing in memory
(PIM)[8][10][21][17]. One can build a high performance and
low power in-memory system by moving data-intensive com-
putations to the memory side.

However, the key challenge of PIM is the constraint on cost
and thermal[28]. A highly specialized PIM is not desirable
because it may not be useful for most applications and can
not reach commodity. A powerful general processor on the
memory side is intractable due to the power consumption
generates unmanageable heat. It is crucial to find general and
cost efficient functions to enable PIM.

2. Idea

In this project, we aim to characterize the in-memory databases
and investigate the feasibility to accelerate their bottlenecks
with PIM. Databases are one of the most memory intensive,
widely used applications. As they spend most of their time on
DRAM stalls, they could be accelerated by PIM significantly.
The key idea is no matter how databases are designed, they all
need general functions such as index traversals, partitioning,
sorting, and filtering. These functions are highly possible to
be bounded by DRAM because their low spatial locality and
massive working sets. As the computation of these operations
is general simple, it is possible to design an array of these PIM

functions to parallelize them and hide the memory latency.
Doing these operations on the memory side can minimize
the data movements over wires, which costs 23X energy of
double-precision fused-multiply add operation in 10nm[15].
Processing bulk data on the memory side can also significantly
reduce cache thrashing on the processor side.

3. Related Works

Several prior studies analyzed the bottlenecks of databases and
proposed specialized accelerators to speed them up. The most
common benchmarks are TPC-C for online transaction pro-
cessing (OLTP) and TPC-H for online analytical processing
(OLAP)[2]. Most OLAP related works used MonetDB[12],
an in-memory, column-store database. On the other hand, the
OLTP related works are based on Shore[7] or DBx1000[27].
According to their focus, they can be categorized as join oper-
ations, relational operators, and concurrency controls.

The analysis of MonetDB found that join operation accounts
for 47% of the TPC-H execution time[24]. A hardware data
partitioner was proposed to accelerate the data partition of join
operations by 7.8X[24]. A set of specialized walker units were
proposed to improve the hash index of join operations, which
can be improved by 3.1x[16].

Another family of accelerators speed up the relational op-
erators that manipulate database columns or tables. Q100 is
a specialized database processing unit that can improve the
performance of 24-thread software database by 1.5X-2.9X[25].
Commercial data warehouse have been using FPGA to accel-
erate the database query, such as IBM DB2 Analytics Acceler-
ator (IDAA)[6].

The concurrency control of databases would emerge as a
new bottleneck when running on many-core chips. Recent
study showed that classic concurrency controls can not scale
well to a 1024-core system, where databases spend most of
the time on lock manager or abort[27]. A hardware-based lock
manager may be needed at that scale.

The analysis of Shore showed that this OLTP database spend
around 80% of time on logging, locking, latching, and buffer
management. A single-threaded, lock-free, main memory
database system without recovery can be up to 20x faster[11].

Our project is different from these prior works as we are try-
ing to accelerate general operations as PIM instead of special-
ized accelerators in processors or FPGAs. The key difference
is we need to make it general and simple enough so that is can
be stacked with memory dies. In addition, our work distin-
guishes from them because we can fully utilize the extremely
abundant memory bandwidth as there are no external wire



constraints for PIM. These different design considerations will
lead to unique optimal designs.

4. Logistics

4.1. Project plan

In this project, our goal is to characterize in-memory database
and find the potential bottlenecks that could be sped up by
shipping computation to the memory side. To begin with, we
need to choose a DBMS that suits our constraints such as time-
budget. Our plan is to characterize DBx1000[27] to identify
potential data structure operations that could be accelerated by
PIM. DBx1000 is a single node OLTP database management
system (DBMS). The original purpose of DBx1000 was to
make DBMS scalable on future 1000-core processors. We
choose DBx1000 because it is relatively simple compared to
other DBMSs. It was implemented from scratch and removed
several artificial bottlenecks in conventional DBMSs. This
makes it suitable for our purpose, especially considering our
time-budget and simulation infrastructure. We believe that
DBx1000 could be used as a representative example of other
DBMSs, so our analysis result can be applicable to others as
well.

As the first step, we need to run DBx1000 on a real ma-
chine and profile it using Perf[1]. Perf is a profiler tool for
Linux 2.6+ based systems that abstracts away CPU hardware
differences in Linux performance measurements and it can
instrument CPU performance counters and tracepoints. The
purpose of profiling is to find bandwidth and latency sensitive
computational patterns that account for large fraction of the
execution time. The profiling outcome will enable us to design
one or multiple PIM functions that could accelerate a wide
range of bottlenecks in DBx1000.

After designing the PIM functions, we need to evaluate our
proposed design to demonstrate the performance improvement.
Conducting evaluation in a real machine is not feasible because
it requires PIM to be implemented in a 3D-stacked memory,
which is an extremely time-consuming process. Thus, we plan
to examine our proposed PIM function design using a full
system simulator. We will use GEM5[5] full-system simulator
and run DBx1000 on the simulated system with PIM. GEM5 is
a modular event driven full-system simulator which supports
various instruction set architecture such as x86, ARM, SPARC,
MIPS, Alpha and PowerPC.

4.2. Milestones

Based on our plan, the project milestones are as follows: By
milestone 1 (Nov 1), we will prepare the simulation infrustruc-
ture and we will finish the profiling of DBx1000. By milestone
2 (Nov 21), we plan to design the PIM function to accelerate
the bottlenecks identified by profiling result, and we will the
evaluate it using the simulator.

4.3. Goals

The project goal is to analyze in-memory databases and investi-
gate the feasibility of designing one or multiple PIM functions
which could reduce the execution time of those in-memory
databases. While the in-memory DBMSs spend most of their
time on DRAM stalls, it is still possible that these stalls are
evenly distributed among different modules of the DBMSs. In
that case, hardware acceleration can improve limited amount
of computations and DBMSs might not benefit too much from
shipping computation to the data. Thus, our 75% goal is to
characterize DBx1000, design the PIM function, implement
the proposed PIM function in the GEM5 simulator and achieve
10% performance improvement. Our 100% goal is that our pro-
posed PIM function can reduce DBx1000 execution time by
30%. Finally, Our 125% goal is to characterize other databases
such as MonteDB and attempt to find out how our proposed
PIM functions could be applied to them.

4.4. Final Report Outline

In this section, we provide an outline of our final report. The
outline will contain the following sections:
• The problem
• Background

– Processing in memory
– DBMS profiling and hardware acceleration

• The profiling result of DBx1000 (or MonetDB)
• The architecture of the proposed PIM design
• Evaluation

– Performance evaluation
– Sensitivity analysis
∗ Different system configurations (core number, cache

size)
∗ Different size of database working set

• Conclusion

4.5. Required Recources

Our required recources are as follows:
• GEM5 full system simulator, which is a free, open source

software.
• DBx1000, which is an open source software.
• Perf profiling tool. It is available in Linux kernel.
• The computation server to run DBx1000 on GEM5. It is

available within our group.

References
[1] “Perf.” [Online]. Available: https://perf.wiki.kernel.org/index.php/

Main_Page
[2] “Transaction processing performance council,” Web Site, http://www.

tpc. org, 2005.
[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a

modern processor: Where does time go?” in VLDB" 99, Proceedings of
25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, no. DIAS-CONF-1999-001,
1999, pp. 266–277.

[4] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 4, no. 1, pp. 1–108, 2009.

2

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page


[5] N. Binkert, B. Beckman, A. Saidi, G. Black, and A. Basu, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, 2011.

[6] P. Bruni, P. Becker, W. Favero, R. Kalyanasundaram, A. Keenan,
S. Knoll, N. Lei, C. Molaro, P. Prem et al., Optimizing Db2 Queries
with Ibm Db2 Analytics Accelerator for Z/os. IBM Redbooks, 2012.

[7] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe,
J. F. Naughton, D. T. Schuh, M. H. Solomon, C. Tan, O. G. Tsatalos
et al., Shoring up persistent applications. ACM, 1994, vol. 23, no. 2.

[8] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational RAM:
A memory-SIMD hybrid and its application to DSP,” in Custom Inte-
grated Circuits Conference, vol. 30. Citeseer, 1992, pp. 1–30.

[9] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[10] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
Terasys massively parallel PIM array,” Computer, vol. 28, no. 4, pp.
23–31, 1995.

[11] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “Oltp
through the looking glass, and what we found there,” in Proceedings
of the 2008 ACM SIGMOD international conference on Management
of data. ACM, 2008, pp. 981–992.

[12] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and M. Ker-
sten, “MonetDB: Two decades of research in column-oriented database
architectures,” Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, vol. 35, no. 1, pp. 40–45, 2012.

[13] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in VLSI Technology (VLSIT),
2012 Symposium on. IEEE, 2012, pp. 87–88.

[14] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
Jones, S. Madden, M. Stonebraker, Y. Zhang et al., “H-store: a high-
performance, distributed main memory transaction processing system,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499,
2008.

[15] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” Micro, IEEE, vol. 32,
no. 5, pp. 7–17, 2011.

[16] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the walkers: Accelerating index traversals for in-
memory databases,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2013, pp.
468–479.

[17] P. M. Kogge, “EXECUBE-A new architecture for scaleable MPPs,” in
Parallel Processing, 1994. Vol. 1. ICPP 1994. International Conference
on, vol. 1. IEEE, 1994, pp. 77–84.

[18] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-latency DRAM: A low latency and low cost DRAM architec-
ture,” in High Performance Computer Architecture (HPCA2013), 2013
IEEE 19th International Symposium on. IEEE, 2013, pp. 615–626.

[19] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt,
“Understanding and designing new server architectures for emerging
warehouse-computing environments,” in Computer Architecture, 2008.
ISCA’08. 35th International Symposium on. IEEE, 2008, pp. 315–326.

[20] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast mul-
ticore key-value storage,” in Proceedings of the 7th ACM european
conference on Computer Systems. ACM, 2012, pp. 183–196.

[21] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
Micro, IEEE, vol. 17, no. 2, pp. 34–44, 1997.

[22] S. Sanfilippo and P. Noordhuis, “Redis,” 2009. Available: http://redis.io
[23] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory DBMS.”

IEEE Data Eng. Bull., vol. 36, no. 2, pp. 21–27, 2013.
[24] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating big

data with high-throughput, energy-efficient data partitioning,” in Pro-
ceedings of the 40th Annual International Symposium on Computer
Architecture. ACM, 2013, pp. 249–260.

[25] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100:
the architecture and design of a database processing unit,” in Proceed-
ings of the 19th international conference on Architectural support for
programming languages and operating systems. ACM, 2014, pp.
255–268.

[26] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[27] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the abyss: An evaluation of concurrency control with one thousand
cores.”

[28] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, M. Meswani,
M. Nutter, and M. Ignatowski, “A new perspective on processing-in-
memory architecture design,” in Proceedings of the ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness. ACM,
2013, p. 7.

3

http://redis.io

	Problem and Motivation
	Idea
	Related Works
	Logistics
	Project plan
	Milestones
	Goals
	Final Report Outline
	Required Recources


