
An OS Service for Efficient Data Communication in Large-Scale

Machine Learning Applications

Anders Øland
anderso@cs.cmu.edu

Timothy Loffredo
timloff@gmail.com

Yimeng Zhang
yimengzh@cmu.edu

October 23, 2014

Abstract

Communication has become one of the most significant bottlenecks for modern large-scale
machine learning applications, e.g. deep neural network, whether using a compute cluster with
thousands of nodes, or a single multi-GPU machine. However, there’s little OS-level support
for fast and efficient communication prevalent in these scenarios. In this project, we plan to
develop an OS service that applies quantization and other (possibly lossy) compression tech-
niques to increase throughput of communication yet doesn’t hurt the performance of learning.
We’d like to explore appropriate compression schemes for different kinds of data, as well as
designing an on-line algorithm to determine the best compression parameters dynamically. In
our initial experiments with neural networks [1], we were able to reduce the communication
overhead by nearly an order of magnitude, without slowing down the convergence, or hurting
the generalization of the model.

1 Introduction

Large-scale distributed machine learning is becoming increasingly more important in modern com-
puting. The ability to learn from massive amounts of data is extremely useful in both research and
industry applications. In particular, deep learning has received an enormous amount of interest,
and indeed companies like Google, Facebook, Amazon, and Baidu have all been investing heavily in
this line of research. This involves processing terabytes of data, and training models with billions
of parameters; even on the biggest and fastest computers in the world, this can take days, and even
weeks — for one single model. A lot of attention has been given to the problem of improving the
learning algorithms, in order to get good scaling. However, no published work (literally) exists on
specifically tackling the primary bottleneck, which is communication.

In this project, we will investigate the effectiveness and usefulness of different methods for
quantization and compression of the parameters of neural networks (NN) in a distributed setting.
In this context, data (and possibly the model parameters) are split across different workers. Model
parameters and intermediate products in learning need to be communicated across workers during
learning. The end goal is to provide an OS service that can handle the communication involved in
distributed deep learning effectively. Albeit, in this work, we will not actually focus on implementing
said service, but rather we will propose how it could be implemented. That is, what quantization
and compression algorithms are best suited for different types of data (e.g. weights or error gradients

1

mailto:anderso@cs.cmu.edu
mailto:timloff@gmail.com
mailto:yimengzh@cmu.edu


in a NN), and different contexts (e.g. CPUs vs. GPUs, or Ethernet vs. InfiniBand), and what is
the data that needs to be transmitted (e.g. Huffman codebooks, or quantization meta-data).

2 Methodology

2.1 Resources

In order to evaluate the effectiveness of the various versions of the service we propose, we will
implement it in MATLAB. That way, this project can focus on experimenting with different quan-
tization and compression methods rather than thrashing on implementation details. This project
also requires a testing environment where we can measure the communication and performance
metrics of a running system using our service. Anders, a member of our team, privately owns two
machines with nine NVIDIA GPUs connected by a dual-channel InfiniBand interconnect. We plan
on using these machines as our testbed.

2.2 Evaluation

In choosing a compression scheme, we must consider many factors including cost (complexity and
execution time), memory usage, effectiveness (compression ratio), and impact on learning (the
generalization error of the model). Obviously, the cost of encoding, sending, and decoding the data
must be less than simply sending the data as is. Similarly, cutting down the cost of communication
is meaningless if it affects the learning negatively, such that either the generalization error increases,
or it takes considerably more iterations to converge (so that nothing is gained with respect to the
total execution time).

Thus, we will evaluate our proposed choices of quantization and compression algorithms, for
various relevant scenarios (use-cases), with respect to:

• Compression ratio

• Impact on learning

• Algorithmic complexity

• Memory usage

3 Goals

The 75% goal for this project (which we expect to achieve) is to evaluate three different methods for
quantization with respect the measures mentioned in 2.2. For this part we will only use Huffman
coding, standard NNs, and one standard dataset (remember, running these experiments is very
time-consuming).

The 100% goal for this project (which is probably achievable) is to include results for convolu-
tional neural networks, compare Huffman coding with gzip, and add an extra dataset. Furthermore,
we will outline a possible communication protocol, and discuss (based on our results) what methods
are best suited for various interesting real-life scenarios.

2



The 125% goal for this project (which is a stretch goal) is to add completely autonomous tuning
of the transport parameters. That is, without knowing anything (or at least not knowing everything
in advance) about the data, how can we choose the best quantization and compression scheme.

4 Final Paper Plan

In our final paper, we will first introduce the problem of data compression in neural networks,
and discuss background and related work. Next, we will briefly outline the experimental setup,
including what machines and environment were used. The gist of the paper will be concerned with
describing and evaluating different methods for quantization and compression. We will provide
experimental results, and conclude with a discussion about what schemes worked well and which
ones did not.

Our early experiments will focus on trying out different compression and quantization schemes
in order to learn their performance characteristics. Huffman codes with dynamically determined
codebooks that are sent in addition to the data is likely to be the first experiment. We will run a
neural network problem programmed in MATLAB on a single CPU or GPU, and test our Huffman
compression scheme by sending weight data at every epoch to a “dummy” proxy process. We will
measure the compression ratio, and the model accuracy.

Other possible experiments include Huffman codes with statically determined codebooks that
are not sent with the data but are known at both ends, Lloyd’s algorithm for quantization, and
naive bitmask quantization. The results of these experiments will tell us which compression and
quantization schemes are most effective for neural network-type data. It might be that a single
algorithm that rises to the top as the obvious winner; or more likely, there will be several algorithms
that form a reasonable set of trade-offs.

We will also try out our compression algorithms on different network architectures (e.g. convo-
lutional neural networks) with different datasets. The results from these experiments will help us
know the effectiveness and generality of different compression schemes for various learning scenarios.

Questions to be answered by our experiments:

• Is compression beneficial for a wide variety of (deep) learning applications?

• What are the appropriate compression schemes for applications with different characteristics?

• What is the overall reduction of communication overhead by compression? Is compression
worthwhile considering the trade-off between the complexity of introducing it and its benefits
for communication?

References

[1] Anders Øland and Bhiksha Raj. Reducing Communication Overhead in Distributed Learning
by an Order of Magnitude (Almost). submitted to ICASSP 2015.

3


	Introduction
	Methodology
	Resources
	Evaluation

	Goals
	Final Paper Plan

