eeRPC — Can Datacenter RPCs be General, Fast,
and Secure?

Alex Litzenberger
alitzenb@andrew.cmu.cdu

Abstract—We investigate how to provide high-performance
encryption over stack bypass applications, using eRPC as our
target application. We look at various design schemes possible,
and describe how we integrated a low-overhead encryption
scheme with eRPC, and look at its performance impact. We find
that the overhead added by TLS to an HTTP call is roughly 8us
per request. We find that having encryption calls in the dispatch
thread severely limits throughput, and one background thread is
sufficient to generate enough AES throughput to saturate a 25
Gbps NIC.

I. INTRODUCTION

High-performance network applications that rely on bypass-
ing the kernel and directly accessing the NIC require security.
Traditionally, adding secure communication to a networked
application has been as easy as integrating TLS/IPSec, which
provide a socket interface similar to a regular network socket.
Not much work has been done in providing equivalent so-
lutions for kernel-bypass networked applications, which do
not want to offload encrypted communication to a regular
kernel socket. Effectively, there is no performant out-of-the
box solution that a stack-bypassing application could use.

We use eRPC as a target application to investigate design
choices and costs of adding such a feature. eRPC is a highly-
optimized RPC library that uses low-level, low-overhead in-
terfaces provided by modern datacenter NICs.

We investigate different schemes for hardware encryption,
and measure their performance. We look at eRPC’s buffer
management, and how to add additional calls in a manner that
minimizes the buffer allocation and management overhead.
We integrate an appropriate scheme into eRPC, measure its
impact, and present our cfforts in mitigating the costs of
encryption.

II. MOTIVATION & BACKGROUND

RPCs are a fundamental building block for many networked
applications. Therefore, optimizing the performance of RPCs
helps a whole class of systems software take advantage of
modern hardware capabilities, and keep up with increasing
performance demands.

In an effort to meet these performance demands, focus
has increasingly converged on specialized hardware and niche
technologies, like RDMA, lossless networks, FPGAs etc.
c¢RPC showed that a substantial amount of performance can
still be extracted via convential networked applications, with
a careful ground-up design. The initial versions of eRPC have
left out many important features provided by standard RPC

Varun Sharma
varunsha @andrew.cmu.com

Ankush Jain

ankushj@andrew.cmu.com

libraries, and focused solely on raw RPC throughput and
minimizing network layer overheads.

eRPC is an excellent testbed for us to integrate an encryp-
tion layer to, and study its performance impact. We combine
two different classes of pre-existing work:

1) 1 Secure transports and RPC libraries.

2) 2 High performance communication software with stack

bypass.

A lot of pre-existing RPC schemes use SSL/TLS, like Mi-
crosoft RPC, gRPC, Consul etc.. Using TLS provides a tested,
prepackaged solution that offers easy integration, secure key
exchange, and message authentication, and modular support
for different ciphers along with reasonably guaranteed updates
that stay up-to-date as the threat environment evolves.

That’s a very compelling set of features. However, using
SSL/TLS requires the application developer to cede a lot of
control to the library. Such a design is antithetical to the
principles used in high performance, stack bypass network
applications that aim to extract every ounce of throughput the
NIC has to offer. We find that TLS, on an average, adds 8us
of latency to each request, in addition to 10s of us of kernel
path overhead, which is unacceptable for eRPC-class systems.

It is necessary for applications like eRPC to retain control of
how the memory is allocated, how many times data is copied
from the NIC receiving it to the multiple layers parsing it,
to the application finally using it, how retransmissions and
failures are managed etc.. We therefore felt it necessary to
implement a custom secure transport that is deeply integrated
with eRPC. We realize that such an implementation, without
undergoing the rigorous security audits OpenSSL etc. do,
would not be secure enough for production environments. It
would, however, still help us understand the performance costs,
and impact on throughput/latency.

We have analyzed the different solutions for en-
cryption out there, including TLS and DTLS - the
latter being a version of TLS optimized for data-

grams. Other standards for RPC encryption like RPCSEC
and draft-cel-nfsvid-rpc—-tls—01 (draft) exist, but
they’re broadly the same class of solutions and suffer from
the same pitfalls as TLS.

III. IMPLEMENTATION
A. Components of an Encryption Scheme

End-to-end encryption schemes like TLS/IPSec usually have
these four guarantees:



