15712 Final Report

cpahka gingyanl
April 2020

1 Introduction

With the end of Dennard scaling, a single-core chip can no longer promise the
expected performance it once delivered. Motivated by the need to meet the ever-
increasing computation demand, most computation platforms have transitioned
from single-core chip to multicore chip. This transition signifies that a program’s
performance is also affected by how it utilizes the available hardware parallelism.
One efficient way to use hardware parallelism is to distribute concurrent tasks
to idle cores. The job of distributing these tasks is done by a scheduler. The
size of the task itself is defined by the granularity. The focus of this work is
OS support for fine-grain parallelism programs using a work-stealing scheduler.
One of the benefits of fine-grain parallelism is preventing underutilized core.

1.1 Work Stealing - Background

In this project we look at work-stealing scheduler as a means to redistribute
work to idle core. Work stealing is the idea where an idle core (worker) can
steal work from another worker. The stolen work is usually the continuation of
a suspending function. The worker that initiate the stealing is refer as the thief,
while the worker that has its continuation stolen is refer as the victim. Work-
stealing scheduler has shown success in balancing work load between processor.

1.2 Work Stealing - Problem Statement

One source of overhead we aim to reduce is synchronizing the deque between
thief and victim. The deque is a doubly ended queue data structure owned by
one worker and contains work that can be stolen. Synchronization is needed to
ensure that the victim and thief do not execute the same work / task. Various
methods, using shared memory, have been implemented to avoid this race condi-
tion. However, these methods require either a lock, synchronization primitive,
or memory barrier, all of which may have negative impact on the sequential
performance. If no stealing occurs, most of this deque management overhead is
wasted.

We believe that we can reduce the overhead by using interrupts instead of
shared memory. The main idea is to not let the thief have access to the victim’s



