Unlocking unallocated cloud capacity
with SLACKSCHED

Anup Agarwal
anupa@cs.cmu.edu
Carnegie Mellon University

1 Introduction

Over the past decade, cloud computing platforms have seen
remarkable success in providing Infrastructure, Platform,
and Software as a Service (IaaS, PaaS, SaaS) for various appli-
cations and have become a default preference for enterprises
and even scientific research. Cloud providers typically rent
out virtual machines (VMs) under an Infrastructure as a Ser-
vice (IaaS) model. These VMs can be acquired and released
on-demand to suit the users’ applications. To accommodate
fluctuations in user demands and to transparently mask fail-
ures for ensuring high availability and reliability of the infras-
tructure, providers typically provision data centers for peak
demands which commonly leads to unallocated resources in
data centers [3, 20].

These unallocated resources are often auctioned using
low-priority VMs (often called spot VMs) with the proviso
that they can be preempted (evicted) at any time. These
preemptions occur when there is an increased demand for
reliable (high-priority) VMs. Despite such auctioning, a lot
of resources still remain unallocated as spot instances are
only conservatively allocated to limit the amount of preemp-
tions. Further, many small spot VMs and large number of
VM evictions add to VM management, creation and applica-
tion initialization overheads [3]. To get around these issues,
Ambati et al. [3] have proposed a new experimental VM class
called Harvest VMs (HVMs).

Harvest VMs, unlike traditional VM offerings, can grow or
shrink in terms of their resources (e.g., core count) depending
on the amount of unallocated resources on the server they
are deployed on. While elastic jobs can readily exploit these
growing and shrinking VMs, there are limits to the elasticity
of jobs. To ensure forward progress and to avoid trashing,
jobs typically need a minimum amount of resources. To
accommodate this, HVMs come in different types which
provide different guarantees to jobs. Users can choose a
minimum core count (e.g., 2, 4, or, 8) and specify whether
they want the HVM to be preemptible. An HVM, will never
shrink beyond its minimum size. A preemptible HVM is
evicted, if the provider needs to reduce the core count below
the minimum threshold.

While HVMs can expose more resources for the same cost
compared to traditional VMs, the unique characteristics of
HVMs compel us to revisit important resource management
problems: (1) Scheduling, and (2) Resource Acquisition. (1)
Scheduling decides at each time instance, which job/task

Sudershan Boovaraghavan
sboovara@cs.cmu.edu
Carnegie Mellon University

Hugo Sadok
hfreitas@cs.cmu.edu
Carnegie Mellon University

should run on which VM. Existing job schedulers, oblivious
to HVMs, can be overly optimistic leading to too many task
preemptions on VM shrinking events, or overly conservative
being unable to exploit VM growth events (§2.2). (2) Resource
acquisition deals with what HVM mix should one allocate
for a given workload. A mix of HVMs containing HVMs
of different types or minimum sizes can lead to different
performance in terms of job completion times or makespan
as different types differ in their ability to harvest and expose
unallocated resources (§2.3).

Our work mainly tries to address the question: How can
we adapt scheduling and resource acquisition mechanisms to
cater to the unique behavior of harvest VMs? We partially
answer this question by designing and evaluating Srack-
ScHED, an HVM aware scheduler. A major challenge we face
while doing so, is that it is hard to model and predict the
behavior of HVMs. Their resource availability often depends
on factors such as VM arrival and departure process of the
cloud provider which are invisible to the user of the HVMs.
We circumvent this by observing that even though exact
knowledge of HVM behaviors is hard to ascertain, but the
distribution of their behaviors changes only slowly over time.
Using this observation, SLACKSCHED is able to improve mean,
median and tail of job completion times by 10-30%.

We have integrated SLAckScHED within Hadoop, a pop-
ular cluster resource management framework. To deliver
scheduling improvements, SLACKSCHED assumes knowledge
of job resources and lifetimes. Prior works [5, 13, 16, 17]
have shown that workload resource and runtime estimation
can be done by leveraging historical runs of periodic jobs
as well as the structure of jobs. Such workloads can readily
use SLACKSCHED without requiring any application changes.
Further, providers can use insights from our design to build
back-ends for platform as a service, for example, batch pro-
cessing and serverless computing (e.g., AWS lambda and
Azure functions) as these services also often use resource
and/or runtime estimates.

On the resource acquisition front, we analyze HVM traces
generated from VM arrival data from 20 clusters spread
across 15 geographic regions from the deployment of a large
cloud provider. Our major finding from this analysis is that,
(a) the server on which the HVM is deployed on, and (b)
the cluster the server is present in; also matter apart from
the minimum size and type of the HVM. This is unlike all
traditional VM offerings, wherein, once a user decides the



