Towards a debuggable kernel design

Ashish Gupta, Chandrika Parimoo
{ashishgu,cparimoo } @andrew.cmu.edu

Abstract— This paper describes what it means for a kernel to
be debuggable and proposes a kernel design with debuggability
in mind. We evaluate the proposed kernel design by comparing
the iterations required in cyclic debugging for different classes
of bugs comparing a kernel with its variant enhanced with
our design rules for debuggability. We discuss the trade offs
involved in designing such a kernel, and present our findings
along with the design of the debuggability enhanced kernel.

I. INTRODUCTION

Operating system kernels generally consist of several
subsystems handling memory management, process
management, process scheduling, network, I/O and
peripheral devices. The interactions between and within
different parts of the kernel are asynchronous. The size
of the kernel and the inherent asynchronous concurrent
model of programming makes the implementation of a
robust kernel challenging. When bugs arise, isolating
and reproducing them is generally harder than userspace
programs due to the mentioned properties of a kernel.
Kernel development and debugging is arcane[l], therefore
creating a high barrier of entry for new kernel developers.

Debugging is one of the most costly phases in software
development. Developers spend over 30% of their time
debugging and validating software[2]. The cost of debugging
rises up as one moves to lower layers of the software stack
because of the increasing amounts of guarantees provided
to the layers above. Debugging as an early consideration
can help make the process shorter alleviating costs.

Kernel debugging has conventionally proceeded through
the use of tools which stand at various levels of maturity,
but never from the perspective of the kernel’s design itself.
We define debuggability” as the kernel’s inherent ability to
lend itself to debugging. We argue that the kernel knows best
about itself and can be designed to provide well structured
and relevant information about the deviation in its behavior
and make the process of debugging the kernel (itself) more
efficient. Debuggability can thus be considered an intrinsic
property of the kernel and taken into account during the
design of the kernel instead of being an afterthought.

II. RELATED WORK

Existing debugging approaches include tracing and
probing with the use of tools such as DTrace[3] which
allow live patching of instructions with instrumentation code
in order to get more information about instructions being

executed. This can be a useful technique for debugging, but
only captures the execution trace (where overhead can be
as large as 100x for high frequency function calls[4]). Our
approach exposes the kernel’s high level information to the
developer in the form of data structures that the developer
understands instead of only relying on the execution stream
and function arguments.

Kernel developers use forms of remote debugging (over
a serial line)[5]. While this technique has been an effective
way for kernel debugging, it requires the possession of an
additional machine to run a master kernel on one machine
sending commands to the debugee kernel on another
machine. We do away with the requirement for additional
hardware for debugging by incorporating the ability for a
kernel to help debug itself.

Hardware based approaches such as JTAG[6] are very
powerful expose a lot of detail about the execution with
the help of a special controller. Although one can get a
large amount of information , the information provided can
be too low-level to be useful for debugging kernel design
issues. Our approach, on the other hand, focuses on the
kernel’s high level structures providing means to infer some
low-level information as well.

Hypervisor based record and replay approaches such
as Samsara[7] offer an excellent way to tackle hard
to reproduce bugs through the use of virtual machines
and hypervisors. Although effective, they inherently lack
performance as the use of virtual machines and hypervisors
slows down performance (upto 6x on a 4-core machine)
limiting their usefulness. In our approach, we wish to get
rid of the overhead imposed by the use of virtual machines
and exploit the hardware the kernel runs on directly to
provide a record-and-replay feature as a part of d-mode.

Diagnosys[8] allows the automatic generation of
debugging interfaces by statically analyzing the kernel code
for safety holes. This allows Diagnosys to generate relevant
logs at run time which help in debugging. The approach
is restricted to the identified safety holes and Diagnosys is
added as a module to the Linux kernel rather than being
integrated in the design of the kernel.

The work on exposing bugs before having to debug them
provides good examples of the kind of bugs most likely
to be found in a kernel. Landslide[9], in its approach of



