15-712 Project Report:
The Performance of Batch-Parallel Modular Exponentiation
on CPU and GPU

Sam Westrick Benjamin Berg Laxman Dhulipala

ACM Reference Format:

Sam Westrick Benjamin Berg Laxman Dhulipala. 2019. 15-712
Project Report: The Performance of Batch-Parallel Modular Exponen-
tiation on CPU and GPU. In Proceedings of ACM Conference (SPAA °19).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Hardware today is increasingly specialized for particular tasks.
Perhaps the most prominent example is the GPU, which first
emerged in the late 90s with increased demand for fast video
processing. Although GPUs are specialized for graphics, this
does not mean that their use is limited to graphics applications.
There has been a remarkable push in the past decade for using
GPUs to solve a variety of “embarrassingly parallel” tasks, in-
cluding scientific computing, machine learning, cryptography,
etc.

GPU proponents claim massive speedups (e.g. multiple or-
ders of magnitude improvement) in comparison to traditional
approaches on a standard CPU technology. However, there are
potential issues with this claim [9]. There is a fundamental dif-
ference in design between high-performance libraries for the
CPU and GPU: the GPU is assumed parallel, whereas the CPU
is often assumed single-threaded. A prime example is the GNU
Multiple Precision Arithmetic Library (GMP) [1], which imple-
ments a variety of fast bignum primitives for CPUs, however
all of GMP’s primitives are designed to solve a single problem
instance at a time. In contrast, Nvidia’s XMP library [2] imple-
ments fast multiple precision arithmetic on batches of problem
instances. This begs the question: are there any performance
gains to be had by switching to a batch parallel model on the
CPU? More broadly: how much of the benefit of GPU is due
to the assumption of a batch parallel model?

In this project, we aim to gain some understanding of these
questions by considering a particular problem: fast modular
exponentiation on the CPU and GPU. The problem is simple
(given b, e, and m, compute b* mod m) but fundamental to a
variety of cryptographic applications.

1.1 Overview and Contributions

The structure of the rest of this paper is as follows:

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SPAA 19, June 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

e In Section 2, we explain the state-of-the-art algorithm
for modular exponentiation, and highlight where the
expensive calls in this algorithm lie.

e In Section 3.1, we describe the hardware specific capa-

bilities exploited by XMP and our experience trying to

port this code to a CPU based implementation.

In Section 3.2, we describe the process of extending the

GMP implementation of the Montgomery algorithm

with a batch-parallel variant, taking advantage of low-

level vectorization to achieve performance improve-
ment.

In Section 4, we evaluate our GMP-based implementa-

tion, and discuss directions for future work.

2 MONTGOMERY MULTIPLICATION

Montgomery multiplication is an optimized algorithm for com-
puting the product of two positive integers, a,b modulo a
modulus m. The method is useful for computing a" mod n, a
ubiquitous computation in cryptosystems like RSA. The mo-
tivation for the Montgomery algorithm is twofold. First, we
compute many repeated multiplications (a repeatedly multi-
plied by itself) modulo a fixed number n. Left unchecked, the
bit-complexity of the operand will become huge and finding
the modulus of this huge operand modulo n will be very costly.
The idea in the Montgomery algorithm is to repeatedly apply a
reduction operation, which takes the result of multiplying two
numbers a and b in [0, n) and efficiently reduce the produce
modulo n.

At a high level, the technique replaces a modulus operation
modulo m, which is a costly division operation with a division
by another integer r s.t. ged(m, r) = 1. In practice (and in these
notes) m will always be odd, and therefore we can choose r to
be the first power of two larger than m so that the division and
modulus just become bitshift and masking operations. Note
that this requirement of m being odd is satisfied in practice
since we are usually computing modulo a large prime.

Classical modular multiplication. In classical modular mul-
tiplication, to compute the quantity ab mod m we first com-
pute the product ab which may require 2 machine words if
a, b are both w bits each, and then perform a division on this
double-word product. There are two costly steps: the first
is switching to operations on double-words, and the second
is division by an arbitrary m which necessitates repeatedly
subtracting m until the value falls below m.

2.1 The Montgomery Algorithm, modulo
Reduction

We now present the Montgomery algorithm, while treating
the key step—the reduction algorithm—as a black box. Note

