Streamlet in EPR Using [Vy

Sydney Gibson, Afonso Tinoco, Mihir Bala, and Ke Wu

1 Introduction

Distributed consensus protocols have become a staple of today’s cryptocurrency landscape. In theory, they
enable multiple geographically scattered machines to agree upon a transaction, despite unreliable commu-
nication and Byzantine failures. In practice, however, they are difficult to implement correctly due to
widespread extrinsic non-determinism. Despite these issues, making strong guarantees about these protocols
might be possible. In recent years, formal verification tools have become popular, enabling users to rule
out large classes of implementation bugs and prove useful properties about their code. Although they have
seen limited application in distributed systems contexts, some researchers have already begun experimenting
with them on well-known consensus protocols [11]. In this paper, we discuss our journey in implementing
Streamlet [1], a blockchain-based consensus protocol, using formal verification tools. In doing so, we will
highlight the successes and failures we encountered along the way while also discussing the abilities and
limitations of current verification tools.

2 Background and Motivation

Distributed consensus protocol implementations are notoriously difficult to debug. This is due to their
reliance on asynchronous, unreliable network code along with their potential for non-determinism. Unfor-
tunately, with their use in popular cryptocurrencies like Bitcoin and Etherium, it has become increasingly
critical that such protocols are implemented correctly. Failures could result in fraudulent transactions, caus-
ing serious financial damage and compromising user security. In late 2020, a memory out-of-bounds bug
was found in the Etherium code base, causing a fork. Luckily, no user data was compromised. A verified
consensus protocol implementation, if executed correctly, could guarantee that such bugs will never arise, a
feature which would not only increase the system’s integrity but also bolster user confidence. This is not a
simple process, however. Network code is very difficult to verify which poses serious problems when design-
ing a verified distributed program. Thus, we settled on a relatively simple blockchain consensus protocol,
Streamlet. For our implementation, we decided to use Microsoft IVy, a verification language and framework
for automatic verification designed with distributed protocols in mind.

2.1 Primer on IVy

IVy is a protocol verification system and programming language built to specify, implement and verify
protocols described in effectively propositional logic (EPR). EPR is a decidable subset of first order logic
that contains formulas with quantifiers only as prefixes and without uninterpreted functions.

IVy was developed with the goal of making system verification convenient and to minimize proof writing
effort. Because EPR is a decidable logic, as long as the developers can describe the system in EPR, an
automated theorem prover (in the case of IVy, Z3[2]) can always either prove invariants about the system,
or come up with counterexamples along with suggested stronger invariants. IVy also supports full first order
logic, but the automated theorem prover might not terminate in that case.

Compared to Linear Temporal Logic (LTL) verification frameworks, such as TLA*[4], IVy does not have
a built-in way to specify eventual temporal properties. However, it does allow users to specify atomic state-
changing actions and invariants maintained between those actions. Therefore, in order to describe eventual
temporal properties in IVy, a user must provide bounds for the eventual properties (such as liveness). This is
a double edged sword, as, although it enforces users to write more invariants that could otherwise be omitted



