Seesaw: QoS in Distributed Cache Systems

Brian Schwedock (bschwedo), Graham Gobieski (ggobiesk),

Elliot Lockerman (elockerm)
15-712: Advanced OS and Distributed Systems, Fall 2017

1 Abstract

High server utilization requires running hetero-
geneous workloads (such as batch and latency-
critical applications) on the same machine, in-
troducing the potential for interference in the
shared cache. Ubik [1], a Quality-of-Service
(QoS) system for cache partitioning, provides
tail latency guarantees for uniformly accessed
caches. The Seesaw system attempts to imple-
ment Ubik and generalize it to non-uniformly
accessed caches (NUCA) by applying its tech-
niques to Jigsaw [2], a NUCA cache parti-
tioning and data scheduling system. Early
results suggest that under our current system,
latency-critical applications are generally able
to meet their deadlines, but an improvement
in batch application throughput was not ob-
served. This may be because the simulated
system was not under enough load to require

QoS.

2 Introduction

As the number of cores on a chip multiproces-
sor (CMP) increases, it becomes impractical
to offer uniform access latency to a shared
last-level cache (LLC) [3]. Newer systems
spread the LLC banks across the cores, lead-
ing to a non-uniform cache access time, or
NUCA (Figure 1). Current commercial sys-
tems are not NUCA-aware; data are typically
striped across banks, leading to uniform—but
mediocre—latency. Servicing cache misses,
therefore, becomes a significant portion of
overall program latency.

In modern OS runtimes, resources are allo-

Figure 1: NUCA cache architecture

SRAM Cache Bank

Private L1 & L2

Y
91N139}1YydJly 9|i L

Core

cated by some metric, generally maximization
of utility. One limitation of this metric is
that all applications are treated identically;
however, some applications have stricter la-
tency requirements than others (e.g. soft real-
time vs batch). Running both on the same
machine without some guarantee of quality
of service (QoS) would significantly degrade
performance; the latency-critical applications
would have low utilization, so resources would
be diverted to the batch processes. This pre-
vents servers from efficiently running batch
jobs and latency-critical jobs together, leading
to low utilization. The StaticLC partitioning
example in Figure 2 shows a static configu-
ration where latency-critical applications are
always allocated enough cache space to meet
deadlines. Since these applications run in-
frequently, a lot of cache space which could
otherwise be used by batch applications is
wasted.

A complication common to all of these use
cases is that the resources needed in excess
of standard levels change at a fine granularity
(10s of ms). For example, a latency-critical
application may only need additional cache
space near the end of a deadline. Allowing it
to keep this space afterwards would impact the
batch operation without helping the latency



