RMQ: An RDMA-capable Message Queue

Minghua Deng”, Yesheng Ma*, Xueyuan Zhao*
Carnegie Mellon University
{minghuad,yeshengm,xueyuanz}@andrew.cmu.edu

ABSTRACT

Messages are the most broadly used approach for communication
in distributed systems. Programming message-based distributed
systems was painful for a long time due to the complex nature of
network environments. The recent advent of message queues helps
alleviate this problem by providing a generic interface for different
advanced messaging patterns. However, existing message queues
are built upon kernel-based network protocols and have not yet
leveraged modern RDMA hardware. This paper presents the design
and implementation of RMQ, an RDMA-capable message queue
built on top of existing message queue libraries, which achieves 1.5
to 5x throughput improvement compared with existing TCP-based
message queue implementation, and supports all the advanced
patterns and optimization existing message queue libraries has to
offer.

1 INTRODUCTION

(Broker-less) Message queue is a very desirable network program-
ming abstract that are highly optimized for high-performance and
has built-in support for many different advanced network pro-
gramming patterns, such as request-reply, publisher-subscriber,
and Push-Pull. As a result, many distributed systems are using mes-
sage queues as building blocks to build there high-performance
network components on. However, through existing message queue
implementations supports many different underlying protocols,
such as TCP/UDP/IPC, none of them provides native support for
another appealing network technology, Remote Direct Memory
Access(RDMA).

The idea of remote direct memory access is not new, many re-
search works has been done on this topic starting from 90s. which
provides better latency and throughput for the system by bypass-
ing kernel and CPU. As the devices(NICs/Switchs) that natively
supports RDMA become more and more available for commercial
systems nowadays, many companies that wish to have extremly
low-latency and high-performance are replacing their network
stacks with RDMA support ones.

It is obvious that if we can combine message queue with RDMA,
and do it wisely, we can get both higher performance and desir-
able network programming abstracts. Moreover, we believe that
it provides an alternative solution for building RDMA-based dis-
tributed systems, which people now often build from scratch or use
RDMA-based TCP libraries. RDMA-capable Message Queue can be
used as an building block that hides complicated RDMA settings
but provides expressive network primitives in building these kind
of systems.

In this paper, we first introduces some related design of both
RDMA and messaging systems in section 2 and section 3, and then
we dive into the message queue socket abstraction where we base

*Authors contributed equally to this research.

our work on in section 4. After that we will explain some of the
design choices we made in and the architecture of our systems
RMQ in section 5. Then we will have evaluation in section 6 and
related work in section 7. Finally, we will conclude in section 8.

2 BACKGROUND

In this section, we will discuss modern hardware and software that
are essential for building high performance network application.
We will also discuss

2.1 Remote direct memory access

Remote direct memory access (RDMA) is a network technology
that has been proposed long ago[14] and has becoming more and
more appealing in recent system research[1] [8] [11].

RDMA are now supported through three different ways in com-
mercial clusters, including using RDMA native-supported hardware
Infiniband[12], using technology developed by Mellanox called
RDMA over Converged Ethernet(RoCE)[2], and Internet Wide Area
RDMA Protocol. While technology like RoCE can provide support
for RDMA in commercial Ethernet, the performance advantage
of RDMA can only be fully utilized using Infiniband which can
provide extremely high bandwidth (up to 100Gbps), low latency
and link layer guarantees. The wide equipment of infiniband in
network performance sensitive cluster is also the reason that brings
RDMA back to alive.

RDMA gains its performance advantages over traditional Eth-
ernet based TCP/IP network by bypassing the kernel stack when
transmitting packets, and directly reads and writes data from and
to main memory through PCle. It support several different primi-
tives including reliable/unreliable data transmission, and CPU are
only involved in posting the action (verbs in RDMA) into queues,
and NICs will process them by accessing bound memory without
invoking CPU again. As a result, it may help achieve much higher
throughput in CPU-bound senario.

RDMA supports two different data transmission patterns, one is
two-sided RDMA, and another is one-sided RDMA, the differences
between these two are mainly on whether both sides’ CPUs need to
post actions into the queue before sending or receiving messages.
For one sided RDMA, only the side that actively takes action need
to post action into NIC, and for two sided RDMA, the other side
need also to post an action to prepare for the message transmission.
The performance of these two transmission pattern can be varied
for different scenario and need to be considered for achieving the
optimal performance.[7] [9]

2.2 Messaging Systems

There are two kinds of messaging systems, broker and brokerless.
Broker messaging systems persist messages for failure recovery
whereas brokerless messaging systems have lightweight messaging



