Parallel LLVM Execution Engine
15-712 Advanced Operating Systems and Distributed Systems

Zhixun Tan
zhixunt@andrew.cmu.edu

Abstract—We extended the LLVM query compilation feature
in Peloton, an in-memory database system developed at CMU.
In particular, we parallelized query execution for TableScan
and HashJoin. We adopted the morsel-driven parallel execution
model, where target tables are split into chunks and processed
in separate threads. This parallel execution model is well suited
for the push-based query compilation model, where operators in
a pipeline can be fused into a single scanning loop.

Keywords—Query Compilation, Parallel Execution, Database.

I. INTRODUCTION

Normally a database system works like an interpreter of
SQL queries: The user provides a SQL query as a string,
then the system parses it into an Abstract Syntax Tree (AST),
performs annotations, analyses and transformations on the
AST, and executes corresponding operations. The part of the
system that is responsible for executing the AST is called the
“execution engine". The execution engine can be thought of
as a function that takes in an AST and outputs the result.

Traditional database systems use the pull-based Volcano [1]
iterator model. Each operator implements a GetNext () method,
which recursively calls the GetNext () method of its child(ren).
The entire AST is therefore traversed once each time a tuple
gets outputted.

An alternative idea is that, instead of interpreting the AST,
we can compile and then execute it. In this way, the compiled
code is specialized for that specific query, thus achieving
better performance. There are mainly two approaches for
query compilation: generating C/C++ code and invoking a C
compiler, or generating LLVM IR and utilizing the LLVM JIT
engine. Previous experiments [2] show that the first approach
introduces too much compilation overhead. Therefore, the
second approach is more widely adopted. HyPer [2], MemSQL
[3], Cloudera Impala [4], and Microsoft Hekaton [5] are some
examples of real-world database systems that have the query
compilation feature.

Query compilation reduces interpretation overhead in the
following ways:

e When performing expression evaluation, the inter-
preter must traverse the expression tree once for
every tuple, which involves many virtual function
calls. With query compilation, with the knowledge
of all the types, the generated code directly uses the
corresponding machine instructions.

e Query compilation climinates the need to recursively
traverse the operator tree. Operators in the pipeline are
effectively “fused" together in a single piece of code.

Hao Jin
haoj@andrew.cmu.edu

e Query compilation eliminates tuple materialization
between operators in a pipeline. By generating code
for the entire query, ecach tuple only needs to be loaded
and materialized once in each pipeline.

Peloton is a database system that is now being developed at
Carnegie Mellon University. Its execution engine is currently
in the process of transitioning from a interpreted one to a
compiled one. A number of features are already supported,
including basic table scan, hash join, aggregates and expression
cvaluation. For our project, we implemented parallel execution
in this compiled engine. More specifically, we generated
multithreaded code for processing queries.

Peloton uses full-query compilation. It fuses operators in a
pipeline to a single loop. Only queries that must be executed
in separate stages (such as HashJoin that must be executed by
first building a hash table from the first table and then probing
it from the second table) do we compile into multiple loops.
This suggests that we can naturally adopt a data-parallel model.
We split target tables into chunks, and submit tasks that are
responsible for different chunks to a task queue. And a thread
pool will be responsible for running the tasks. A key property
that we maintain is that each task still runs the entire pipeline
- we are not putting different operators, but different chunks
of the table into different threads.

The rest of this report is as follows. We describe related
work on both query compilation itself as well as parallel query
execution in sections II and III. Then we use concrete examples
to explain the two kinds of queries we parallelized - TableScan
and HashJoin. In section IV we discuss how TableScan is
compiled and how we parallelize it. In section V we discuss
how HashJoin is compiled and how we paralleize it. Then
we discuss performance evaluation in section VI. Finally we
conclude this report in section VIIL.

II. RELATED WORK - QUERY COMPILATION

Query compilation dates back to as early as the 1970s,
when IBM System R [6] compiled SQL queries into assembly
code by applying a corresponding code template for each
operator. However, it is later abandoned for poor performance,
lack of portability, and significant engineering complexity.
Then, query compilation was not widely adopted for major
database systems, mainly because in traditional disk-oriented
databases, the performance overhead was disk I/O, and the
benefit of eliminating interpretation was little.

Recent in-memory database systems have adopted query
compilation in different ways.

