Optimizing Packet Classification in Open vSwitch

Megha Arora
Carnegie Mellon University
marora@andrew.cmu.edu

1. INTRODUCTION

Open vSwitch (OVS) [8] is a virtual software switch
that allows users to run multiple virtual machines on
a single physical host. It is an important abstraction
for administrative purposes but also improves the effi-
ciency of the system. Open vSwitch specifies a “virtual
switching” layer, which applies a potentially very large
set of classification rules to an incoming packet to deter-
mine where it should be routed. These rules are critical
for security and are used for traffic filtering, acting as a
firewall for the packets. The rule set is often modified
within the system and is not a static table. Thus any
implementation must be able to dynamically alter the
rule set periodically.

As the number of machines and rules increase, the
scalability of virtual switching becomes a crucial prob-
lem. Theoretically optimal algorithms require substan-
tial pre-processing time which cannot accommodate fre-
quent addition and deletion of rules. In practice, sim-
pler implementations are used. In OVS, the classifica-
tion algorithm is to hash the headers of each incoming
packet into tables to determine which rules may apply
to a given packet. Since a given rule may only apply to
certain portions of the header (due to wildcard fields),
such as the destination IP or the port, the packets must
be masked to check if a rule applies to them. Since dif-
ferent rules apply to different wildcard masks, for each
wildcard mask a distinct hash table is needed. Gen-
erally, there are around 20 to 30 distinct masks in an
instance of OVS, resulting in the need to store just as
many tables. Upon the arrival of each packet, each wild-
card must be applied to its header and then hashed into
the respective table. The current state-of-the-art imple-
mentation simply traverses the tables in a random order
because it is difficult to predict which table will contain
the matching rule.

In this paper, we consider optimization to the OVS
packet classification algorithm. In particular, we con-
sider adding an additional first level of indirection for
packet classification prior to the table look-up to de-
termine whether the look-up will find a match or not.
Our protocol is based on the usage of Bloom Filters
[1] to quickly test set membership for potential packet
classification in a table prior to the look-up.

Jeffrey Helt
Carnegie Mellon University
jhelt@andrew.cmu.edu

Rajesh Jayaram
Carnegie Mellon University
rkjayara@cs.cmu.edu

2. OVS CLASSIFICATION

OVS employs a multi-layer system for packet classifi-
cation. The layers are ordered so that look-ups proceed
in decreasing order of efficiency, yet in increasing prob-
ability of finding a match. Each rule applies to some
header values of the packet, but not necessarily all. For
instance, some rules will apply only to certain source or
destination IP addresses or ranges of addresses, while
some will apply to both and to the timestamp and/or
the port. The result is a collection of mask types, where
for each combination of fields to which the rule applies
we obtain a different mask. To determine whether a rule
applies to a given packet, the packet header must be
masked by each type and checked. Thus incoming flows
first proceed to an exact-match cache, which will rec-
ognize cached frequent flows and quickly classify them.
If a miss is incurred in the exact match layer, the flow
proceeds to the “megaflow” layer, wherein the aforemen-
tioned masking occurs.

The megaflow layer is where our optimizations are
primarily concerned. In the megaflow layer, each mask
type is applied to the packet header, and the result is
hashed into a table which contains all the rules which
apply to that mask type. The first hit in a table that
is found is taken. Note that we are guaranteed that no
more than one rule can apply to a given packet, so this
behavior is correct.

Hash tables in OVS are implemented using an opti-
mized implementation of Cuckoo hashing [11]. Unfor-
tunately, while a single table lookup is fast, the number
of required table lookups grows as the number tables in-
creases. As a result, the aggregate time spent perform-
ing table lookups becomes a significant overhead when
20 or more tables are used. Further, table lookups be-
come more costly as the number of rules increases. This
is due to the additional size of the in-memory working
set. Figure 1 shows our profiling results. We use In-
tel VTune to profile OVS while applying uniform traffic
across all of the rules. Samples were collected over a
period of 120 seconds in both cases.

3. BLOOM FILTER LAYER

Our proposed improvements rely primarily on the ad-
dition of a new layer of indirection prior to the hash
table look-up. Instead of traversing through the hash
tables until a hit is found, each hash table is instead



