Faster PostgreSQL Replication with eRPC - Final Report

Gustavo Angulo Mezerhane
Carnegie Mellon University

1 Abstract

Database systems usually use replication to improve avail-
ability, fault tolerance, and performance of the system. In
particular, PostgreSQL, a disk-based database management
system optimized for OLTP workloads, uses a master-standby
architecture and streaming replication where the master server
sends write ahead log records in messages to the standby
server via TCP/IP on UNIX sockets. These message speeds
have an impact on the replication, as slow speeds can result in
replica divergence or slow transnational throughput, depend-
ing on if the replication is asynchronous or not. We look at the
performance of PostgreSQL’s replication messaging protocol,
and replace it with eRPC, a high performance RPC library.
Using eRPC, we achieve a reduction in message latency be-
tween the master and the standby, and 16% faster transactional
throughput in the TPC-C benchmark when executing with
synchronous replication.

2 Introduction

A database management system (DBMS) is a critical compo-
nent of virtually every modern day application. Companies
generate, store, and analyze business critical data in DBMS’s.
As such, many users of DBMS’s expect high availability, fault
tolerance, and performance from their data management solu-
tions.

Many DBMS’s use replication to fulfill these expectations.
Database replicas serve as copies of the data, with replicas
shipping updates between each other to stay up to date. Repli-
cas can thus fulfill queries into the database that users make.
The database system itself can then use these replicas for a
variety of reasons:

1. Availability: Having multiple replicas ensures that the
database has high availability that can fulfill client’s re-
quests when network is lossy and machines are crashing.

2. Fault Tolerance: Multiple replicas ensures that in the

Alexander Yu
Carnegie Mellon University

Yue Yin
Carnegie Mellon University

event of a crash, data is not lost, and the system can fulfill
client’s requests by rerouting them to an active replica.

3. Load Balancing: The DBMS can cleverly distribute
client requests across replicas to balance the work across
all available nodes.

4. Performance: The DBMS can make use of the replicas
to increase throughput through its distribution of user
requests. For example, long, read-only analytical queries
can be handled by a replica in order to not slow down
short, critical write queries executing on a particular
node.

Different DBMS’s handle replication schemes differ-
ently. A scheme commonly used by many DBMS’s is a
Master-Slave scheme. In a Master-Slave scheme, any re-
quests are sent through the master, which can then decide how
to handle it, or sent to a central dispatcher which forwards it
to the appropriate replica. In a typical Master-Slave scheme,
write requests are handled by the master node, whose job is
to write the change in its own copy of the data, and forward
the request (in some form) to the slave replicas so they can
reproduce the write on their copy of the data. Read requests
can be handled by either a master or slave replica, providing
high availability across replicas.

A critical part of any replication scheme is the sending of
information necessary from the master to the slave node so
that it can reproduce or handle a request made to the DBMS.
This presents a challenge of how best to send data between
replicas. We will also take note of the two types of replication
as they face different messaging challenges:

e Asynchronous replication: Transactions on the master
are allowed to commit before the change is reflected on
a standby

e Synchronous replication: Transactions block until its
changes are reflected on a standby

In the case of asynchronous replication, replica divergence,
or how different the data between replicas is, is extremely



