FTL with Oracle

Shangda Li
Carnegie Mellon University
Pittsburgh, PA, 15213
shangdal@cs.cmu.edu

ABSTRACT

The flash translation layer (FIL) of an SSD is responsible
for mapping logical LBAs to physical pages, and performing
garbage collection and wear leveling. A key performance metric
of an FIL is Endurance, the number of write requests endured
by the FTL until it declares failure. Current state-of-the-art FTL
algorithms are not workload-aware and they do not achieve
workload-specific optimal page-allocation that can maximize
the Endurance of SSDs. We conjecture a superior workload-
aware FTL algorithm that can maximize SSD lifetime exists,
though devising such an algorithm is difficult and likely in-
volves the use of machine learning. To prove the feasibility of
such a workload-aware algorithm, we implement an oracle
with complete knowledge of a workload, which can provide
hints to the FTL to help the FTL make smarter decisions. We
mainly explore two types of hints: various hints to tell the
FTL the hotness/coldness of LBAs, and various hints about
the optimal internal parameters used by a FIL, such as the
block threshold for cleaning. We also implemented an FTL base-
line that combines approaches from multiple state-of-the-art
FTL algorithms. By showing that the FIL baseline with oracle
achieves 20% to 25% higher Endurance than just the FTL base-
line, we demonstrate that it is possible for a workload-aware
algorithm to outperform state-of-the-art FTL algorithms. We
conjecture that a workload-aware algorithm can substitute
hints from the oracle with hints deduced on its own, possibly
using methods such as machine learning.

1 INTRODUCTION
Background

Solid-state drives (SSDs) based on NAND Flash memory have
long been the state-of-the-art non-volatile storage medium.
Compared to hard-disk drives, SSDs have faster random I/O
speed and can serve multiple requests in parallel. SSDs are
widely used in smart phones, personal laptops, data centers,
and high-end computing. Internally, an SSD is a collection
of physical pages, organized in a hierarchy of packages, dies,
planes, and blocks. These layers are hidden to the upper
layer, such as file systems and user programs, which view
the SSD as a series of Logical Block Addresses (LBAs). Each
LBA corresponds to the size of a physical SSD page. Several
key characteristic of SSDs are

(1) No overwriting on a SSD page is possible, so every
new write must occupy a new page.

Sheng Xu
Carnegie Mellon University
Pittsburgh, PA, 15213
shengx@cs.cmu.edu

Tianjun Ma
Carnegie Mellon University
Pittsburgh, PA, 15213
tianjunm@cs.cmu.edu

(2) Erases can only be done on the granularity of blocks,
so valid pages must be migrated before erasing a block.

(3) Each SSD block can only tolerate a limited number
of erases, called its lifetime. If a particular block is
updated and erased frequently, it will wear out before
other blocks and make the SSD inoperable.

Therefore, using direct mapping between LBAs and physical
pages is not possible, and SSDs come with a flash translation
layer (FTL). The FTL is responsible for address translation
(logical-to-physical mapping that maps LBAs to physical
pages), garbage collection (erasing blocks to free up space
when the SSD is filled up), and wear leveling (load balancing
writes across blocks to extend the lifespan of an SSD). Thus
the FTL policy for SSDs is very similar to the Segment Clean-
ing Policy we read about in the Log-Structured File System
[1]. Similar to LFS, an FTL cleans with block granularity,
migrates pages, and keeps track of page locations.

Motivation

There are numerous varying FTL algorithms. Even though
some of them contain dynamically adjusting parameters, e.g.
maximum distance between the healthiest and the most worn
out block, their core algorithms and the way their param-
eters adjust is the same across different workloads, where
each workload is an online stream of LBA requests sent to
the FTL, including READ, WRITE, and TRIM. However, we
conjecture that there are different patterns that modern com-
puter programs exhibit in their LBA traces, and for each
of these patterns some FTL algorithms perform better than
others, and within the same algorithm some combinations of
the parameters perform better than others. Such a superior
workload-aware algorithm that outperforms state-of-the-art
FTL algorithm can extend the lifespan of SSDs, which is
desirable given the wide use of SSDs.

However, devising such a workload-aware algorithm is
difficult. We speculate that the algorithm is not deterministic
and might require machine learning. In this paper, our goal
is less ambitious: we aim to show that a superior workload-
aware algorithm is feasible. We implement an oracle, which
knows the entire workload upfront, and uses this complete
knowledge to provide hints to the FTL. If we show that FTL
algorithms can perform better with hints from an oracle, then
this can serve as a proof-of-concept that there is room for a



