Designing New OS Primitive(s) for Efficiently Fuzzing

COTS Software

JAY BOSAMIYA and ANJA KALABA, Carnegie Mellon University

Fuzzing is a well-known technique for automatically finding bugs
in common-off-the-shelf (COTS) software. It consists of repeatedly
(smartly) generating random inputs to run on a program-under-
test (PUT), until a bug is found. Since the same program is run on
multiple related inputs repeatedly, it begs the question of whether
it would be possible to reduce the time taken for each execution,
thereby increasing the efficiency of the fuzzer and increasing the
number of bugs it identifies. In this paper, we propose a new syscall,
with multiple alternative designs, and perform a feasibility analysis
for it. We show that for some applications, up to 75% of the cost of
execution can be amortized using our syscall.

1 INTRODUCTION

Common Over The Shelf (COTS) software is generally buggy.
These bugs can range from simple hangs and crashes, all the
way up to security-relevant vulnerabilities that can threaten
critical data and systems. As a technique for finding bugs,
fuzzing [Miller and Fredriksen 1990] has remained popular
due to its empirically demonstrated ability to find real-world
software flaws and vulnerabilities. Many techniques for im-
proving the state-of-the-art for fuzzing have been shown
over the years (see [Manes et al. 2019] for a recent survey).
However, certain aspects of the fuzzing loop appear to be
under-studied. We believe that by designing new OS primi-
tive(s), we can improve the program execution part of the loop,
thereby improving the efficiency of state-of-the-art fuzzers.

At a very high-level, all fuzzers follow a simple loop where
they perform (1) input generation (2) program execution
(3) evaluation of the output of the program and potentially
(4) updating the fuzzer state. Fuzzing practitioners have ex-
plored various design decisions in each of these 4 stages, with
varying success. In this project however, we are interested
in the interplay between input generation and program exe-
cution, with an emphasis on the latter. In particular, we are
interested in increasing the performance of fuzzers by reduc-
ing the cost of program execution through amortization of
initialization, while also potentially (ab)using properties of
the input generation.

Fuzzing is usually done in campaigns of a fixed cost or time
budget, where the program under test (PUT) is repeatedly exe-
cuted with different inputs. Since the core component of such
a campaign consists of a single hot loop, any improvements
in performance would increase the number of potentially
useful executions-per-second, which allows for further explo-
ration of the program’s state space under the same budget. A
common bottleneck for fuzzing programs and libraries tends

to be a large initialization cost, before any “real” execution
begins. There are many examples for such initialization cost,
such as web browsers, word processors, PDF readers, etc.
To combat this, the fork-server and in-memory execution
techniques have been suggested. The former uses the PUT
as a fork-server, similar to certain web-servers like gunicorn,
thereby amortizing initialization cost, and the latter goes
a step further by repeatedly executing the PUT within the
same process. These have significant drawbacks however, re-
quiring careful manual insertion of safe fork points, or even
ensuring that there is no global state, as is required in the
case of the in-memory execution technique.

Since the in-memory technique is applicable only for very
specific programs that behave essentially like libraries, we
will not discuss it any further. The fork-server model how-
ever, is more general. The most naive approach to this model
amortizes the expensive execve syscall by performing a fork
immediately after the execve, and then waiting on a signal
from the fuzzer to continue execution. An obvious exten-
sion to this approach allows the programmer to manually
insert the fork into the program, after any initialization code.
However, it is known that the fork syscall does not scale
extremely well across multiple cores (amongst other issues
[Baumann et al. 2019]). Thus, in [Xu et al. 2017], the authors
suggest the introduction of a new operating system primitive,
namely a snapshot syscall, which can scale well. With their
implementation, they show substantial improvements in par-
allelism. However, this still suffers the drawback of requiring
manual insertion of the snapshot call into the PUT, taking
care to place it right before anything useful happens, but after
the initialization is complete.

We propose a new syscall that achieves similar behavior in
an automated way, and could also provide further improve-
ments that a static manually-inserted snapshot call cannot
provide. In particular, we propose to design new primitive(s)
that can be used, with minimal programmer overhead (by
amortizing even across different PUTs), to achieve similar or
(hopefully) better performance gains as previous techniques.
Additionally, we notice that for mutational fuzzing, in which
input generation is done by selecting inputs from a seed cor-
pus and mutating them to produce novel inputs, there are
scenarios within which the PUT might execute the same early
execution phases too. For example, if the mutation operators
are designed to stay within a specific video codecs, then the
initial parsing code that decides which decoder to use will



