15-712 Project Report: An Active Middlebox for Classifying
Congestion Control

Sruti Bhagavatula (sbhagava), Anson Kahng (akahng), Ranysha Ware (rware)

December 13, 2017

Introduction

In 2006, Senator Ted Stevens infamously described the Internet as a “series of tubes”, where “filled” tubes
delayed his email. While Ted was largely criticized for his simplistic view of the Internet, his characterization
of the Internet was not wrong:

“It’s a series of tubes. And if you don’t understand, those tubes can be filled and if they are
filled, when you put your message in it, it gets in line and it’s going to be delayed by anyone that
puts into that tube enormous amounts of material, enormous amounts of material.”

The more technical term for what Ted is referring to is congestion. Logical “tubes” are created between two
processes across a network by transport protocols. These tubes run over physical links between these two
processes that may become filled by competing traffic. When the network becomes congested, packets are
delayed and throughput degrades. If congestion goes unchecked, the network can become so slow it grinds
to a halt, a condition called congestion collapse.

In the late 1980s, Van Jacobson saved the Internet from congestion collapse by adding congestion control
to the de-facto reliable transport protocol, TCP [1]. While TCP has significantly evolved over the years,
Jasobson’s additive increase multiplicative increase (AIMD) algorithm is still a core part of TCP’s congestion
control mechanism.

AIMD effectively limits congestion and converges to an equal share of bandwidth between competing TCP
flows with equal RTT [2], but it has several limitations. New approaches to congestion control have been
proposed and deployed in the wide area to overcome TCP’s limitations or for special use cases. These include
TCP CUBIC in Linux [3], Google’s BBR [4], Microsoft’s Compound-TCP [5], LEDBAT in BitTorrent [6],
and others.

The fairness properties of competing TCP flows using an AIMD congestion control algorithm are well-
understood, but we know little about how this alphabet soup of alternatives all interact in wide area net-
working. Indeed, very little data exists today regarding which protocols are in use and with what popularity
at all.

As a first step to understanding competition between heterogeous congestion control algorithms, we designed
and implemented a testbed to instantiate TCP connections with remote servers and identify the running
congestion control algorithm. However, doing so is non-trivial because congestion control algorithms don’t
tell you what they’re running — they all look like TCP. So, we must indirectly identify these algorithms
based on rate and reaction to drops. In what follows, we describe the design and implementation of our
testbed and discuss the challenges we faced in its implementation: controlling drops at the bottleneck link
(including diagnosing a bug in the BESS scheduler), determining the running congestion control algorithm
based on its queueing behavior, and handling noise due to cross-traffic in the wide area. The latter challenge
is the topic of our current work: while our testbed can accurately identify TCP algorithms in controlled
circumstances, it still fails to identify congestion control algorithmss correctly in wide-area experiments
across the live Internet.



