
Ritchie74 
 
Important Things 

1. This paper introduces a system that established the state of the art of the time, beating 
its contemporary systems in various aspects. It costs very little for an interactive 
operating system. It has intricately designed hardware that is highly efficient. The 
software is for the first time written in C language which gives rise to many functional 
improvements and clarity. 

2. The file system is an epitome of the interactive quality of a system. It categorizes files 
into three main types and introduces concise symbols used for navigating throughout the 
system, setting various access rights for different groups of users. 

3. Surprising fact that there are no pre-defined objectives for developing a system like 
UNIX. The system was not a product with strict specifications but something that reflects 
the actual goals of programmers. All the functionalities reflect practical needs of 
programmers in having an interactive, hospitable, and self-maintaining computer 
environment. 

 
Deficiency 
There is no comparison to previous systems on how were things used to be done. This makes it 
difficult for readers to appreciate the novelty and the frequently claimed superiority of UNIX. 
 
Future 
This paper points out some important preferences during system design. Programmers are 
naturally inclined to making the programs better. If a system provides programmers with 
effective interface that allows modifications to be done promptly and reliably, it will be able to 
‘maintain itself’. Such systems are able to evolve swiftly over time and are thus desirable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lampson83 
 
Important Things 

1. Top thing is defining interface and it should follow a minimalistic mindset. Do not 
generalize and try to create a powerful and mighty program, since the generalization we 
assume at the beginning are usually not accurate, and focusing on small, individual 
tasks makes implementation faster and directly addresses objectives. 

2. Making implementations work is an intrinsically iterative process. The paper suggests 
that even extending previous functionalities of a system requires a whole new level of 
redesigning. It proposes the idea of keeping multiple prototypes and getting prepared to 
forego the worse part. This fundamentally challenges the idea of updating, which we 
usually perform by changing only parts of the original system. 

3. Speed is secondary in comparison to reliability. Speed and fault-tolerance are two 
separate qualities and shall not be closely linked during the design of a program. 

 
Deficiency 
This paper, as the author suggests, contains a lot of details and anecdotal comments that do 
not form a clearly structured whole. It does not address conflict among hints, which leaves the 
reader confused about how to take all the advice into account and weighing their importance 
during specific use cases. 
 
Future 
This paper provides useful advice for developers of large systems. It addresses some common 
situations developers encounter at different stages of the development. Thinking about why 
something helps making a system and where it helps is a universal approach to systems 
design. 


