
Summaries 1/17/20 ssomayya

Birrell84

Important points:

 Language agnosticism: The RPC framework decouples user/server stubs, which could be
easily generated on a per-language basis provided a foreign function interface, from the
RPC runtime environment. In other words, one runtime fits all!

 Communication protocol: communication between the user- and server-facing RPC
runtimes is facilitated through a custom protocol to minimize the volume of packet
traffic (acks, data, etc.) vs. e.g. TCP (perhaps a manifestation of the end-to-end
argument)

 Multiprogramming runtime: the framework is further optimized by keeping a process
pool to handle communication between instances of the runtime

Flaw: I wish they had elaborated more on end-to-end encryption of call data as opposed to the
minutiae of optimization.

Conclusion: the success of this framework from a design point of view is that it manages to
make the act of a remote procedure call as seamless to user- and server-facing code as much as
possible via a modular design of the runtime environment as well as optimizing communication
to make calls as low-cost as possible. Many modern systems fail to achieve such a low-cost
abstraction.

