
Carnegie Mellon
Computer Science Department.

15-712 Fall 2015
Midterm 2

Name:

Andrew ID:

INSTRUCTIONS:

There are 12 pages (numbered at the bottom). Make sure you have all of them.

If you find a question ambiguous, be sure to write down any assumptions you make.

Be clear and concise.

Closed book. 80 minutes.

We will grade the first 7 questions answered. There are 9 questions total: You get to skip two that
you don’t like. All questions have the same weight (10 pt). For the questions you answer, it is better to
partially answer a question than to not attempt it at all.

Only answer 7 of the 9 questions.



Proof Carry Code

1. Necula and Lees paper introduces the concept of proof carrying code (PCC) as a mechanism for safe
kernel extensions.

(1) Describe three major advantages of PCC and briefly explain the reason.

Solution:

- Eliminates run-time checks: PCC needs to check the binary only once.

- Tamper-proof: Even tampered binaries follows the safety policy.

- Safety for code written in any language: The check is at assembly level.

- Safety properties beyond memory protection: The safety policy is much more flexible than memory
protection.

(2) What is the major practical difficulty of PCC?

Solution:

Automatically generating the safety proofs.

(3) The validation of PCC requires a safety predicate and a safety proof. What are they and how are
they used to certify the safety of programs?

Solution:

A safety predicate is essentially a logic form generated from the semantic meaning of a program and
constitutes a formal statement that the program, when executed, will not violate any safety checks.

A safety proof is the proof of a safety predicate, written out in a checkable form, as the proof that
the code obeys the safety policy defined by the code consumer (e.g. OS).

A PCC binary consists of the assembled native code together with an ecoding of the proof of its
safety predicate. To validate the binary, the code consumer (e.g. kernel) first extracts the native
code and then computes its safety predicate using the VC rules. Then, it checks that the safety
proof is a valid proof of the safety predicate.

Page 2



Exokernel

2. The Exokernel paper evaluates the performance and flexibility on Exokernel systems.

(1) Compare the extensability approach of Exokernel with either PCC (proof carrying code) or VM
(virtual machines). Give one advantage and one disadvantage of Exokernel for your comparison.

Solution:

- Comparing with PCC:

Advantage: Exokernel does not need to generate safety proof, a major practical difficulty of
PCC.
Disadvantage: PCC is more flexible than Exokernel because the partition of kernel and user
level is pre-determined in Exokernel.

- Comparing with VM:

Advantage: Exokernel maintains a single view of the machine and exposes more hardware re-
sources to applications, which results in more efficient communication and hardware management.
Disadvantage: VM provides better isolation between guest OSes as all manipulation hardware
resources are isolated and protected by VMM (VM monitors).

(2) The storage system of Exokernel needs to be able to handle application-defined metadata layouts.
Explain (a) what is the solution provided by the paper and (b) how do user-level and kernel-level
components work together to provide this functionality.

Solution:

(a) The solution is UDFs (untrusted deterministic functions). UDFs are metadta translation func-
tions specific to each file type. The kernel storage system uses UDFs to analyze metadata and
translate it into a simple form the kernel understands.

(b) The user-level component invoke the kernel-level component with the metadata structure and
the disk block. The kernel-level uses the corresponding UDF to translate the metadata structure
and enforce necessary protection.

Page 3



The Scalable Commutativity Rule

3. The scalable commutativity paper discusses how to use commutativity to reason about scalability.

(1) What is the scalable commutativity rule introduced in the paper?

Solution:

Whenever interface operations commute, they can be implemented in a way that scales.

(2) The paper introduces the concept of SIM commutativity. Explain what it is and contrast it with the
conventional notion of commutativity (e.g. for algebraic operations).

Solution:

SIM commutativity is a form of commutativity that is state-dependent, interface-based, and mono-
tonic. It is state-dependent as the commutativity depends on certain system states or arguments.
It is interface-based as it requires the resulting states to be indistinguishable via the interface, not
the implementation. It is monotonic as it requires any reordering of a prefix of an action does not
change commutativity.

SIM commutativity allows conditional commutativity so it exposes many more opportunities to
apply the rule to real interfaces than a more conventional notion of commutativity would.

(3) The paper describes four principles for changing POSIX interfaces to make them more scalable. List
three of them and give an example POSIX interface change from the paper for each principle.

Solution:

1. Decompose compound operations: fork+exec versus posix spawn

2. Embrace specification non-determinism: lowest FD versus any FD

3. Permit weak ordering: unordered sockets

4. Release resources asynchronously: delayed munmap

Page 4



Optimistic Concurrency Control

4. Kung introduces optimistic concurrency control (OCC) to replace locks.

(1) Name three disadvantages of locks and how OCC overcomes these disadvantages.

Solution:

- Lock maintenance represents an overhead that is not present in the sequential case.

- There are no general-purpose deadlock-free locking protocols for databases that always provide
high concurrency.

- Paging leads to long lock hold times

- Lock cannot be released until end of transaction.

- Locking may be necessary only in the worst case.

- Priority inversion.

- Lock-based programs do not compose: correct fragments may fail when combined.

In contrast, OCC provides high concurrency without the overhead of locking (also no deadlock issue).
OCC assumes low contention in normal case, comparing to the worst case assumption of locking.

(2) In OCC, which of the following conditions are not sufficient when starting the write phase of trans-
action B? For all transactions A such that A completes before B, either

(a) A completes its writes before B starts its read phase

(b) A’s read set equals B’s write set AND A completes its reads before B starts its write phase

(c) A’s write set does not intersect B’s read set AND A completes its writes before B starts its write
phase

(d) A’s read set does not intersect B’s write set AND A completes its reads before B starts its write
phase

(e) A’s write set does not intersect B’s read or write set AND A completes its reads before B
completes its reads

For each insufficient condition, give an example that causes trouble.

Solution:

(B) A’s writes can overwrite B’s writes. The intersect of their write sets may not be empty and
their write phase can still overlap.

(D) A’s writes can overwrite B’s writes. The intersect of their write sets may not be empty and
their write phase can still overlap.

Page 5



Concurrency Control and Recovery

5. Franklins database survey paper introduces the mechanisms that can be used to support ACID (Atom-
icity, Consistency, Isolation, Durability) transactions in a database.

(1) Serializability maintains the isolation property of transactions. Briefly define what makes a schedule
of transactions serializable.

Solution:

Equivalent to some serial schedule (i.e., a one transaction at-a-time schedule)

(2) Explain what are the STEAL policy, the NO-FORCE policy, and a Write Ahead Log.

Solution:

STEAL: uncommitted transaction can overwrite most recent committed value on non-volatile storage

NO-FORCE: can commit before updates in non-volatile storage

Write Ahead Logging: Write log record to non-volatile storage before update data. Transaction
committed iff all its log records (incl. commit record) in non-volatile storage.

(3) The database recovery mechanism (Aries) described in the paper comprises three phases: Analysis,
Redo, and Undo. Explain the purpose of each phase, and how they are related to your answers in (2).

Solution:

Analysis pass: Processes log and find (1) the first update potentially lost during crash and (2) start
of oldest in-progress transaction.

Redo pass: Apply the Write Ahead Log entries that are associated with the transactions that lost
data because of the NO-FORCE policy.

Undo pass: Undo the updates caused by the uncommitted transactions because of the STEAL policy.

Page 6



Fault-Tolerant State Machine

6. Schneider describes an approach to designing a fault-tolerant service by replicating servers, where each
server is a state machine. To make sure all replicating servers process requests in an order consistent
with potential causality:

(O1) Each server processes requests by a single client in the order issued.

(O2) If request r by client c could have caused a request r′ to be made by client c′, then each server
processes r before r′.

All requests are to be assigned with unique identifiers (UIDs), where the order of UIDs must conform
to O1 and O2. A request is stable at a server once no lower-ID request from a correct client can be
delivered to the server.

(1) Consider implementing the UIDs with Lamport logical clocks or with approximately synchronized
real-time clocks. For each, describe (a) how O1 and O2 can be fulfilled (are additional assumptions
required?) and (b) how to test if a request r is stable.

Solution:

Logical clocks: Assuming messages between a pair of processors are delivered in the order sent. Also,
a processor detects a fail-stop processor failed only after it has received the last message from the
failed processor. Because the logical clocks are used to generate UIDs, the servers conform O1 and
O2 by processing requests based on the order of UIDs. The process order can be guaranteed by
processing stable requests only. A request is stable at replica smi if a request with larger timestamp
has been received by smi from every client running on a nonfaulty processor.

Real-time clocks: O1 follows provided no client makes two or more requests between successive clock
ticks. O2 follows provided the degree of clock synchronization is better than the minimum message
deliver time. Assuming ∆ to be constant such that a request r with UID uid(r) will be received by
every correct processor no later than time uid(r) + ∆ according to the local clock at the receiving
processor. Once the clock on a processor p reaches time τ , p cannot subsequently receive a request
r such as uid(r) < τ − ∆.

(2) What is a major advantage of using logical clocks to implement O1 and O2? What is a major
advantage of using real-time clocks?

Solution:

Logical clocks: The process of message is not bounded by the worst case delay ∆ in real-time clocks
implementation.

Real-time clocks: Its stability test can tolerate Byzantine failures because it can process request after
waiting for ∆. In contrast, logical clocks implementation can not make progress if faulty processors
refuses to make requests.

(3) A server could be faulty and need to replaced. For a fail-stop failure, describe how the hand over
to a replacement server can be done on-the-fly while the system is running when using real-time clocks?
How does your answer change if the system could exhibit Byzantine failure?

Page 7



Solution:

A state machine smi integrates a state machine smnew by sending the values of its state variables
and copies of any pending requests to smnew, and then sends to smnew every request received
during the next interval of duration ∆.

When processors can exhibit Byzantine failures, a single state machine smi is not sufficient for
integrating a new element into the system. To tolerate t failures in a system with 2t + 1 state
machine replicas, t+ 1 identical copies of the state information and t+ 1 identical copies of relayed
messages must be obtained.

Page 8



Paxos

7. A fault-tolerant e-commerce service with three servers A, B, and C uses Paxos for every operation. It
has only 4 TVs left in stock on a Black Friday. Now, server A got a request from a client to buy 3 TVs,
and server B got a request from another client to buy 2 TVs.

The initial communications between servers are (“A->B:M” indicates A sends a message M to B, and the
possible Paxos message types are PREPARE-REQ, PREPARE-RESP, ACCEPT-REQ, and ACCEPT-
RESP):

A -> A: PREPARE-REQ(1)

A -> B: PREPARE-REQ(1)

A -> C: PREPARE-REQ(1)

A -> A: PREPARE-RESP(1, nil)

C -> A: PREPARE-RESP(1, nil)

B -> A: PREPARE-RESP(1, nil)

A -> A: ACCEPT-REQ(1,"Buy 3 TVs")

(1) Complete the message sequence for a scenario where the servers agree on (i.e., choose) the client’s
request to A (buying 3 TVs).

Solution:

A -> B: ACCEPT-REQ(1,"Buy 3 TVs")

A -> C: ACCEPT-REQ(1,"Buy 3 TVs")

A -> A: ACCEPT-RESP(1,"Buy 3 TVs", OK)

B -> A: ACCEPT-RESP(1,"Buy 3 TVs", OK)

C -> A: ACCEPT-RESP(1,"Buy 3 TVs", OK)

(2) Is it possible that the servers instead agree on the client’s request to B (buying 2 TVs)? Justify your
answer with the reason (if not) or by completing a message sequence (if it’s possible).

Solution:

Yes. (the message sequence can be different)

A -> A: ACCEPT-RESP(1,"Buy 3 TVs", OK)

B -> A: PREPARE-REQ(2)

B -> B: PREPARE-REQ(2)

B -> C: PREPARE-REQ(2)

A -> B: PREPARE-RESP(2, nil)

C -> B: PREPARE-RESP(2, nil)

B -> B: PREPARE-RESP(2, nil)

B -> A: ACCEPT-REQ(2,"Buy 2 TVs")

B -> B: ACCEPT-REQ(2,"Buy 2 TVs")

B -> C: ACCEPT-REQ(2,"Buy 2 TVs")

A -> B: ACCEPT-RESP(2,"Buy 2 TVs", OK)

B -> B: ACCEPT-RESP(2,"Buy 2 TVs", OK)

C -> B: ACCEPT-RESP(2,"Buy 2 TVs", OK)

(3) Is it possible that the servers do not agree on either of the requests? If it is possible, how can this
be prevented from happening repeatedly?

Page 9



Solution:

Yes, A and B can keep trying to propose larger value and no one gets the quorum to proceed.
The guarantee progress, a distinguished proposer must be selected as the only one to try issuing
proposals. The distinguished proposer can be elected with some algorithm such as randomness or
timeouts.

Page 10



Byzantine Generals

8. Recall that in the Byzantine Generals Problem, a commanding general must send an order to n − 1
lieutenant generals such that:

IC1: All loyal lieutenants obey the same order.

IC2: If the commanding general is loyal, then every loyal lieutenant obeys the order she sends.

(1) Use an example to explain why 3 generals cannot tolerate 1 traitor.

Solution:

When the commanding general is a traitor, she can send ’attack’ to one lieutenant (L1) and send
’retreat’ to another lieutenant (L2). L1 and L2 will get conflicting message from each other. L1 can
not tell if the commanding general or L2 is the traitor. According to IC2, L1 will attack and L2 will
retreat. However, it violates IC1 because L1 and L2 are both loyal but they do not obey the same
order. Therefore, 3 generals can not tolerate 1 traitor.

(2) If messages are signed using public key cryptography, can 3 generals tolerate 1 traitor? Justify your
answer, referring to IC1 and IC2.

Solution:

When messages are signed using public key cryptography, all generals can verify the authenticity of
the message. Therefore, when a lieutenant receives conflicting messages, she can determine who is
the traitor. In the 3 generals example, if the commanding general sends ’attack’ to L1 and ’retreat’ to
L2, both L1 and L2 will know the conflicting message is sent by the commanding general. They can
follow a common “choice” function to determine their action in this scenario (e.g. choice (’attack’,
’retreat’) = ’retreat’). Therefore, both IC1 and IC2 are conformed.

Page 11



Security

9. Anderson’s paper discusses how cryptosystems fail, focusing on ATMs as a case study.

(1) One conclusion from the paper is that the bulk of the security R&D budget (at least back in 1994) is
for activities that are of marginal relevance to real needs. Use three examples from the paper to justify
this conclusion.

Solution:

Most R&D budget at that time focused on the technical sophisticated attacks that involves crypt-
analysis or the manipulation of transactions. However, the main causes of ATM failures are

- Program Bugs

- Postal Intercept of ATM Cards

- Thefts by Bank Staff

- Observe PINs being typed in & get account number from discarded receipts

- False ATM Terminals

- Programmer arranged for only 3 different PINs

- etc.

(2) To make a system more secure, the paper advocates following four design principles used by safety
critical systems. List three of them and briefly explain each one.

Solution:

- Specification lists all possible failure modes, including every substantially new accident/incident
ever reported

- Explain what strategy has been adopted to prevent (or make acceptably unlikely) each of these
failure modes.

- Spell out how each strategy was implemented, including the consequences when each single com-
ponent fails, including technical factors, training, management issues

- Certification program reviewed by independent experts; test whether the equipment can in fact
be operated by people with the stated level of skill & experience, include monitoring program for
reporting all incidents.

Page 12


