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Abstract

We consider dynamic co-occurrence data,
such as author-word links in papers pub-
lished in successive years of the same con-
ference. For static co-occurrence data, re-
searchers often seek an embedding of the
entities (authors and words) into a low-
dimensional Euclidean space. We general-
ize a recent static co-occurrence model, the
CODE model of Globerson et al. (2004), to
the dynamic setting: we seek coordinates for
each entity at each time step. The coordi-
nates can change with time to explain new
observations, but since large changes are im-
probable, we can exploit data at previous and
subsequent steps to find a better explana-
tion for current observations. To make in-
ference tractable, we show how to approxi-
mate our observation model with a Gaussian
distribution, allowing the use of a Kalman
filter for tractable inference. The result is
the first algorithm for dynamic embedding
of co-occurrence data which provides distri-
butional information for its coordinate es-
timates. We demonstrate our model both
on synthetic data and on author-word data
from the NIPS corpus, showing that it pro-
duces intuitively reasonable embeddings. We
also provide evidence for the usefulness of
our model by its performance on an author-
prediction task.

1 Introduction

Suppose we have a graph whose nodes represent enti-
ties and whose links represent associations. It is com-
mon to ask how we can embed such a graph in a low-
dimensional Euclidean space so that nodes which share
links tend to be close to one another. Graphs like this
often arise when analyzing social networks, distribu-

tions of document topics, co-authorship patterns, or
recommender systems; the resulting embeddings are
useful for tasks like clustering, visualization, informa-
tion retrieval, and exploratory data analysis.

Well-known algorithms for the embedding problem in-
clude MDS (Borg & Groenen, 1997), IsoMap (Tenen-
baum et al., 2000), Locally Linear Embedding
(LLE) (Roweis & Saul, 2000) and spectral cluster-
ing (Ng et al., 2001). (Raftery et al., 2002) intro-
duced a model similar to MDS in which entities are
associated with locations in p-dimensional space, and
links are more likely if the entities are close in latent
space. Recent work (Globerson et al., 2004) proposes
a novel technique for embedding heterogeneous enti-
ties such as author-names and paper keywords into a
single space based on co-occurrence counts.

Now suppose that, instead of a single graph, we ob-
serve a series of graphs which evolve over time, such
as co-authorship links for successive years of the same
conference. We could embed each year’s graph sepa-
rately and attempt to align the embeddings from suc-
cessive years to analyze trends. However, there is no
reason to suppose that embeddings from different years
would be consistent with one another. Furthermore,
we might have limited data for each year, in which case
we would expect to find a better embedding for each
year by taking into account information from neigh-
boring years. In the limit we might have only a few
data points at each time step (for example, imagine co-
authorship data from a journal which publishes only a
few articles in an issue), and embedding just a single
time step’s graph would yield very poor results.

In this paper, we extend Globerson et al.’s CODE al-
gorithm to handle time series data. The result is D-
CODE, a model for dynamic co-occurrence data which
provides full distributional information about the em-
bedding coordinates. We show how to approximate the
observation model in D-CODE with a Gaussian distri-
bution, so that we can use a Kalman filter to infer
coordinates efficiently. The validity of our approxima-



Table 1: Notation
Symbol Definition
pa(i), pi Marginal empirical prob. of author i
pw(j), pj Marginal empirical prob. of word j
p(ai, wj), pij Joint emp. prob. of author i, word j
A, W, T Number of authors,words,timesteps
Φt(A) All author coordinates at t
Ψt(W ) All word coordinates at t
Ct Co-occurrence counts matrix at t
ξi Author coordinate of Taylor expansion
ζj Word coordinate of Taylor expansion
η, Λ Canonical parameters of a Gaussian
µ, Σ Moment parameters of a Gaussian
ηt|t−1 ηt conditioned on C1 . . . Ct−1

tion is demonstrated experimentally by showing that
the resulting embeddings are qualitatively sensible and
that they outperform sensible baseline models on a
prediction task.

While some authors, e.g. Sarkar and Moore (2005),
have previously considered time-series co-occurrence
data, D-CODE is to our knowledge the first dynamic
embedding algorithm which provides principled uncer-
tainty estimates for its coordinates. We present exper-
iments which demonstrate that D-CODE finds high-
quality embeddings as well as that D-CODE’s uncer-
tainty estimates allow more accurate answers to ques-
tions such as the most likely author for a given paper.
We also compare our algorithm’s performance with the
most natural alternative statistical algorithm, namely
PCA over overlapping windows of data, described in
more detail in the Experiments section.

2 Preliminaries

Our aim is to model the cross-interactions of two sets
of entities over time, denoted by {ai}

M
i=1 and {wj}

N
j=1

respectively. Data is given to us as a sequence of co-

occurrence-count matrices {Ct}
T
t=1, where T denotes

the number of discrete timesteps. Thus Ct(i, j) de-
notes the number of times entity ai interacted with
entity wj at time t. In much of this paper, our entity
sets are assumed to consist of authors {ai} and words
{wj}, and Ct(i, j) denotes the number of times word
wj was used by author ai in papers published in year
t. For any particular timestep t, we can normalize the
counts matrix to obtain joint and marginal empirical
probabilities, denoted by pt(ai, wj) and pt(ai), pt(wj).
We will drop the subscript t from these probabilities
since it will be clear from the context.

As in other embedding scenarios, we assume that
entity-pair interactions in the data can be explained
by real-valued latent variables residing in a low-
dimensional space Rk. Let φi and ψj denote the latent
random variables corresponding to author ai and word
wj respectively. By Φt and Ψt we represent all author
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Figure 1: Shaded nodes indicate hidden random
variables. (A) The graphical model relating au-
thor/keyword positions to co-occurrence counts at a
single timestep. (B) The corresponding factored state-
space model for temporal inference.

and word coordinates at time t. We would like to be
able to say that pairs of entities closer together in Rk

will interact more often. In particular, we will model
the count Ct(i, j) as being inversely proportional to
the exponentiated squared distance dij = ||φi − ψj ||

2

between the latent variables of author ai and word
wj . We would like our embeddings to exhibit tem-
poral consistency as well, i.e. coordinates at time t
should reflect evidence {C1, . . . , Ct} accumulated un-
til that time, and not just the data seen at time t.

When talking about multivariate Gaussians, we use
both the well-known moment parameters (µ,Σ), i.e.
the mean and covariance matrix, and the canonical pa-
rameters (η,Λ), where Λ = Σ−1 is the precision matrix
and η = Σ−1µ. Additionally, the notation ηt|t−1 de-
notes the value of a parameter η at time t conditioned
on observations from timesteps 1 to t − 1. Table 1
contains the most commonly used notation.

3 The Algorithm

3.1 The Single-Timestep Model

As in the CODE model, our basic building block is
the probability of a single pairwise author-word inter-
action given the respective coordinates φi, ψj :

p(ai, wj |φi, ψj) = 1
Z p̄(ai)p̄(wj)e

−||φi−ψj ||
2

Z =
∑

ai

∑

wj
p̄(ai)p̄(wj)e

−||φi−ψj ||
2 (1)

This represents the single-timestep graphical model
shown in Figure 1(A). For an entire counts matrix at
timestep t, we get the following likelihood (up to a con-
stant depending on the total number of interactions):

log p(Ct|Φt,Ψt) ∝
−

∑

ai

∑

wj
p̄(ai, wj)||φt,i − ψt,j ||

2 − log Z
(2)

CODE obtains point estimates for φ and ψ via gradient
descent. Since we treat these latent variables proba-
bilistically but would also like to be computationally



efficient, we choose to model the distribution over en-
tity coordinates at time t, i.e. P (Φt,Ψt | C1:t−1), as a
Gaussian distribution.

However, even if we instantiate this joint distribution
and initialize it with reasonable values, we cannot ob-
tain a closed form update for P (Φt+1,Ψt+1 | C1:t) at
the next timestep since the observation likelihood (2)
is not Gaussian. So, we will approximate the true ob-
servation model by a Gaussian as well, in Section 3.2.1.

3.2 Extension to Dynamic Embedding

The natural choice for our dynamic model is a Kalman
Filter (Kalman, 1960), as shown in Figure 1(B). The
three standard steps of conditioning (factoring in a
new observation to the current belief state), predic-

tion (propagating the belief through the transition
model) and rollup (marginalizing to obtain the new
belief state) are all closed-form updates assuming that
the observation and transition models are Gaussian:

Conditioning: P (Φt,Ψt|C1:t−1, Ct = ct) ∝
P (Ct = ct|Φt,Ψt)P (Φt,Ψt|C1:t−1)

Prediction & Rollup: P (Φt+1,Ψt+1|C1:t) =
∫

Φt

∫

Ψt
P (Φt+1,Ψt+1|Φt,Ψt)P (Φt,Ψt|C1:t)∂Φt∂Ψt

(3)
The conditioning step decreases uncertainty in the sys-
tem, and the prediction step increases uncertainty.
The conditioning step corresponds a simple addition
of corresponding canonical parameters. The resulting
Gaussian is characterized by:

Φt,Ψt|C1:t ∼ N(ηt|t,Λt|t)

ηt|t = ηt|t−1 + ηobs

Λt|t = Λt|t−1 + Λobs (4)

where (ηobs,Λobs) are canonical parameters of the ob-
servation model. Let us now examine the prediction
step. Our transition model is a zero-mean symmet-
ric increase in uncertainty by adding a diagonal noise
term, in order to inject uncertainty without biasing
the coordinates in any particular direction:

Φt+1,Ψt+1|C1:t ∼ N(µt+1|t,Σt+1|t)

µt+1|t = µt|t

Σt+1|t = Σt|t + Σtransition (5)

This step controls the degree of diffusion in author and
word positions between consecutive timesteps. The
Σtransition parameter balances the tradeoff between
temporal consistency and the effect of new evidence.

For the first timestep, we initialize all coordinates
around the origin with some perturbation. We set the

initial estimate of the covariance matrix to reflect a
high degree of uncertainty, in order to allow the em-
bedding to adapt to the initial observations.

3.2.1 Approximate Conditioning Step

In order to obtain a tractable Kalman Filter, we
approximate the observation model (2) by a joint
Gaussian over all entity positions. However, we are
unable to obtain a closed-form solution due to the
log-normalization constant log Z. We address this
problem by approximating log Z by Taylor expansions
around suitably chosen points. This leads to closed-
form Gaussian parameters as a solution, which is our
desired approximate observation model. Though this
is an approximation without guarantees, we will show
that the resulting models (a) sensibly represent uncer-
tainty in entity coordinates, and (b) outperform alter-
native models in an author prediction task, indicating
the validity of the approximation. Some details are in
the Appendix.

First-order Taylor approximation of log Z around z
gives

log Z ≈ λZ − 1 − log λ (6)

where λ = 1/z, and z is the value of Z at φi = ξi, ψj =
ζj ∀ i, j. However, direct maximization of the log-
likelihood is still difficult since the normalization con-
stant is a sum of exponentiated terms. Therefore, we
do a second order Taylor expansion of the exponen-

tiated distance term g([φi ψj ]) = e−(φi−ψj)
T (φi−ψj)

around ξi, ζj ∀ i, j. We set the ξ, ζ values to µt|t−1,
the predicted conditional means based on the previ-
ous timesteps. We found this to be most effective, and
this also makes sense since µt|t−1 is the most likely
value in the absence of any information.

The second-order Taylor approximation of g(x) is:

g(x) = g(0) + xT∇(ξi, ζj) +
1

2
xT H(ξi, ζj)x (7)

where ∇(ξi, ζj) and H(ξi, ζj) are the gradient and
Hessian of g(x) respectively, evaluated at ξi, ζj . They
are defined as follows:

∇1(ξi, ζj) = ( ∂g
∂φi

)ξi,ζj
= −2e−(ξi−ζj)

T (ξi−ζj)(φi − ψj)

∇2(ξi, ζj) = ( ∂g
∂ψj

)ξi,ζj
= −∇1(ξi, ζj)

(8)

H =
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Figure 2: Two pairs of contour plots of an author’s true posterior conditional (left panel) in a 3-author, 5-word
embedding and the corresponding approximate Gaussian posterior conditional obtained (right panel). B is a
difficult-to-approximate bimodal case, C is an easier unimodal case.

H11 = 2e−(ξi−ζj)
T (ξi−ζj)(2(ξi − ζj)(ξi − ζj)

T − I)

H12 = −H11, H21 = −HT
11, H22 = H22

(9)
A few more terms are required for our main result.
Define Λ̃ to be a symmetric matrix of size k(A+W )×
k(A + W ), as in (10). I is the k × k identity matrix,
where k is the embedding dimension. In our experi-
ments we use k = 2. Let Λ̃(a, b) denote the 2×2 block
Λ̃([2a − 1, 2a], [2b − 1, 2b]).

Λ̃(i, i) =
∑

j pijI2×2

Λ̃(A + j, A + j) =
∑

i pijI2×2

Λ̃(i, A + j) = −2pijI2×2

(10)

where i ∈ 1 : A, j ∈ 1 : W . All other entries are zero.
Define η to be a vector of length k(A+W ) and Λ to be
a symmetric matrix of size k(A + W ) × k(A + W ), as
in (11) and (12). Let η(a) denote the 2× 1 sub-vector
η([2a − 1, 2a]).

η(i) = pi

∑

j pj∇1(ξi, ζj)

η(A + j) = pj

∑

i pi∇2(ξi, ζj)
(11)

Using the same notation as Λ̃ above, we define

Λ(i, i) = pi

∑

j pjH11(ξi, ζj)

Λ(A + j, A + j) = pj

∑

i piH22(ξi, ζj)

Λ(i, A + j) = pipjH12(ξi, ζj)

(12)

Let Θt denote the stacked vector [ΦT
t ΨT

t ]T of all au-
thor and word coordinates at time t. The resultant
approximate log-likelihood has the following form:

log p(Ct|Φt,Ψt) ∝ −C + (−ληT Θ) −
1

2
(ΘT (2Λ̃ + λΛ)Θ)

Note that it corresponds to a Gaussian in canonical
form. The final set of observation model parameters
thus obtained are:

ηapprox = −λη

Λapprox = (2Λ̃ + λΛ)
(13)

Thus the Gaussian approximation to our observation
model has canonical parameters (ηapprox,Λapprox). In
the conditioning step we use (4) to get (ηt|t,Λt|t).
From these, we compute the moment parameters
(µt|t,Σt|t). Now in the prediction and roll-up step
we use these parameters to obtain estimates of
(µt+1|t,Σt+1|t) using (5).

The resulting Λ may have negative eigenvalues. To
project to the closest possible symmetric-positive-
definite matrix, we set the negative eigenvalues to a
small positive number. Together these approxima-
tions give us a tractable expression while retaining the
highly informative inter-coordinate interactions (e.g.
x − y correlation in two dimensions).

In Figure 2 we compare contour-plots of the true pos-
terior conditional to the one obtained by our method.
The true posterior may be multimodal, as in the left
panel of Figure 2(A), when it is difficult to approx-
imate with any unimodal distribution. Even then,
the corresponding Gaussian is centered reasonably be-
tween the two peaks (Figure 2(A) right panel). In
most cases we observed, however, the true posterior is
unimodal and the approximation is a good fit, though
with higher variance (Figure 2(B)).

4 Experiments

We evaluate D-CODE based on the quality of visual-
izations produced, their temporal consistency and cor-
respondence to the data. We empirically evaluate the
usefulness of distributions provided by D-CODE, and
see whether useful properties of the distribution are
preserved. We also quantitatively test performance on
an author-prediction task.

4.1 Algorithms and Tasks

D-CODE The filtering distribution over entity coor-
dinates learned from dynamic co-occurrence data per
timestep can be used to calculate expected probabili-
ties for prediction. These can be estimated in closed
form using our approximation for log Z, by marginaliz-
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Figure 3: Dynamic embedding of a noisy synthetic data sequence with authors X1 . . . X3,Y1 . . . Y3 and words
A1 . . . A3, with 0.95 confidence ellipses. A. Initially the X−A pairs have high co-occurrence counts. B. over time
this trend shifts to equal counts, C. and eventually shifts to high co-occurrence counts between Y −A pairs. D.
For the same sequence, average predicted rank of authors Xi given words A over time as ranked by Naive Bayes
with and without the distributions. Notice the gradual change in D-CODE’s prediction compared to the sharp
change when not modeling uncertainty.

ing over the latent positions. This is the most powerful
model among the alternatives considered, capturing
both uncertainty in entity coordinates as well as tem-
poral dynamics. To evaluate the usefulness of dynamic
modeling, Static D-CODE is a variant that learns an
embedding based on CT−1 to predict coordinates for
year T . The alternative of prediction based on embed-
ding the aggregate data

∑T−1
t=1 Ct fares worse.

D-CODE MLE To evaluate the usefulness of mod-
eling uncertainty in entity coordinates, we can evaluate
model probabilities using (1) at µt|t, which is the pos-
terior mean of Φ and Ψ. Static D-CODE MLE is a
variant analogous to Static D-CODE described above.

Dynamic PCA We compare D-CODE against
a dynamic embedding algorithm based on PCA
(M.W. Berry & Letsche, 1995) of overlapping windows
of the data. We create a new data set by averaging our
co-occurrence counts over fixed-size windows of consec-
utive timesteps to maintain temporal consistency. On
the NIPS data we use a window of size 4, heuristically
chosen for good performance.

For an aggregated counts matrix C over a window, we
compute D, which is a diagonal matrix with D(i) =
∑

j C(i, j). Let M = εI + (1 − ε)D−1C. This de-
fines the transition probabilities of a random walk on
a graph with words and authors as nodes, and links
with respective co-occurrence counts as weights. ε
is the probability with which at any step the ran-
dom walk stays at the same node. Mp then de-
notes the transition probabilities of a p-step random
walk. Since M is un-symmetric, the standard prac-
tice is to work with a symmetric matrix, i.e. N =
D1/2MD−1/2 = εI +(1− ε)D−1/2CD−1/2. Note that
Np = D1/2MpD−1/2. The top eigenvector of N is a
constant vector. The top k (excluding the first) eigen-
vectors of N , scaled by eigenvalues raised to powers

of k/2, give us the PCA projection of the counts ma-
trix. We manually picked the ε and p for which the
algorithm seems to perform best. The projection in
the current timestep is transformed via the Procrustes
transform (Sibson, 1979) to best align with the previ-
ous timestep’s configuration.

LLE We embed co-occurrence data using Locally
Linear Embedding (Roweis & Saul, 2000). Like the
static D-CODE variants above, we embed data for
year T − 1 and predict for year T . Since LLE cannot
meaningfully embed heterogenous sets of entities based
on pairwise counts alone, we define author-author dis-
tances based on the words they use, as in Mei and
Shelton (2006). This allows us to compare with LLE,
though the resulting algorithm sometimes returns de-
generate embeddings. We report results from cases
with non-degenerate embeddings.

Any of the above embedding techniques can then be
used to get point estimates of the coordinates, or dis-
tribution over the coordinates, using which we perform
the following prediction task:

Naive Bayes Author Prediction We use the dis-
tributions over entity locations at each timestep to per-
form Naive Bayes ranking of authors given a subset of
words from a paper in the next timestep.

4.2 Data sets

NIPS We looked at word-author co-occurrence data
over 13 years from the NIPS proceedings of 1986-
19991. We implemented D-CODE on a subset of the
data with the 40 most prolific authors and 428 most
common words appearing in their papers.

1http://www.cs.toronto.edu/ ∼ roweis/data.html



Synthetic We generate a synthetic data set to
closely examine D-CODE’s ability to model tempo-
ral patterns and represent correlations in its poste-
rior distributions. The data consists of a sequence
of co-occurrence counts matrices involving two groups
of authors X1 . . . X3 and Y1 . . . Y3, and a single group
of words A1 . . . A3. The data exhibits three distinct
epochs. X −A co-occurrences are high and Y −A are
low in the first few timesteps. Afterwards, these co-
occurrences start changing slowly until X − A counts
are low and Y − A counts are high.

4.3 Visualizing trends and uncertainty in

synthetic data

To investigate whether distributions over entity co-
ordinates give us any advantage, we ran D-CODE
on the synthetic data set described earlier. Fig-
ure 3 illustrates the D-CODE embedding of this data
in timesteps from these three distinct periods, along
with 95% confidence ellipses of the conditional poste-
rior for each entity, fixing every one else’s locations
fixed at their posterior means. The orientation of el-
lipses around entities is informative. For example, fig-
ure 3(A) indicates that uncertainty in Xi locations is
most acceptable in directions orthogonal to the A−X
axis. This indicates that our variational approxima-
tion of the observation model manages to represent
uncertainty consistently with the data.

We calculated the average rank of authors Xi given
the word list A1, A2, A3, A4 over all timesteps using
the Naive Bayes prediction. We expect this rank to be
close to 2 in the beginning (mean of 1, 2, 3), and drop
gradually to 5 to reflect the dynamic trend in the data.
The change happens very smoothly over time-steps
20− 60. Figure 3(D) shows that the ranks induced by
D-CODE fulfill this expectation, since ranks change
smoothly from low to high over this period. This is
because of the increase in uncertainly in author posi-
tions, which is also reflected in the enlarged confidence
intervals of the X’s in figure 3(B). The MLE estimate,
on the other hand is overconfident and switches too
abruptly.

4.4 Visualizing the NIPS data

We embedded the NIPS data using D-CODE.
The words in different parts of it define different
areas of machine learning. We also find the corre-
sponding authors in those areas. For example in
figure 4(A) we have presented the embedding of
40 authors and 428 words. These are the overall
most popular authors, and the words they tend to
use. We can divide the area in the figure in four
clear areas, within the rectangles. The top-right
region magnified in Figure 4(C) has words like
reinforcement,agent,actor,policy,acquisition

authors such as Singh, Dayan and Barto which
clearly are words from the field of reinforcement
learning. In the top-left region are words like
kernel,regularization,error,bound. The other
two regions also have noticeable patterns.

4.5 Predicting authors of NIPS papers

We define a prediction task by attempting to rank au-
thors given a set of words, say from a paper taken
from a subsequent timestep. D-CODE and D-CODE
MLE can calculate the required marginal probabilities
p(w | a) for Naive Bayes as described earlier. We can
also compute p(w | a) from Dynamic PCA or LLE
embeddings by using entity locations as Φ and Ψ in
the model probability equation (1). We first describe
a few specific author-keyword pairs and their condi-
tional probability-based rank predictions over time.

In Figure 5 we plot the rank of particular authors
given particular keywords over time according to Naive
Bayes prediction with uniform priors, in comparison
to the empirical conditional probabilities. In the bot-
tom panels of Figure 5, (Jordan,variational) and
(Smola,kernel) have high empirical probabilities in
the later timesteps, corresponding to ranks closer to 1
in the top panel according to D-CODE. The prediction
according to Dynamic PCA is less consistent and does
not correspond to the data nearly as well.

In table 2, we show median predicted rank of true au-

thors of papers using embeddings of different sized sets
of authors and words, according to Naive Bayes pre-
diction. Note that this is a harsh metric since a paper
may have multiple authors and the metric expects each
of them to be ranked as first-author, which is impossi-
ble. Here our aim is just to compare with alternative
models, not to compare with the state of the art.

For each size of data set (a,w), random subsets are
obtained from the 100 most prolific authors and their
500 most common words. We perform filtering up to
t = 12 on the NIPS data, then predict author ranks
for all papers in t = 13 with an author included in
the embedding. Average predicted rank is calculated
for each true-author by ranking all possible authors
given words in the paper, noting the rank of the true
author, then averaging this measure over all (true-
author,paper) pairs. This process is repeated for sev-
eral embeddings, to counter randomness. We see in the
table that D-CODE-based predicted ranks are better
in most cases. This can be attributed to D-CODE’s
usage of distributions. LLE-based embeddings, as well
as the static counterparts of D-CODE and D-CODE
MLE, perform poorly in most cases. These algorithms,
Static D-CODE and Static D-CODE MLE, embed the
counts matrix for t = 12 and use it to predict authors
for t = 13 with and without using distributions, re-
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Figure 4: (A). t = 13 Dynamic embedding of NIPS data (1999). (B),(C). Close-ups of roughly the top two boxes
in (A), showing regions dominated by distinct sub-fields.
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Figure 5: Average author rank given a word, predicted using D-CODE (above) and Dynamic PCA (middle), and
the empirical probabilities p(a | w) on NIPS data (below). t = 13 corresponds to 1999. A. Jordan and variational.
B. Smola and kernel. C. Waibel and speech. Note that D-CODE’s predicted rank is close to 1 when p(a | w) is
high, and larger otherwise. In contrast, Dynamic PCA’s predicted rank shows no noticeable correlation.

Table 2: Median predicted rank of true authors of papers in t = 13 based on embeddings until t = 12. Values
statistically indistinguishable from the best in each row are in bold. D-CODE is the best model in most cases,
showing the usefulness of having distributions rather than just point estimates. D-CODE and D-CODE MLE
also beat their static counterparts, showing the advantage of dynamic modeling.

Data size D-CODE D-CODE Static Static Dynamic LLE
(authors,words) MLE D-CODE D-CODE MLE PCA
20a, 188w 4.1 7.4 14.4 9.5 7 11.8
30a, 289w 8 10.5 9 12 9 13
40a, 348w 14.2 9.5 12.8 19 16.8 21

spectively. This shows the usefulness of modeling dy-
namics of the data, since information from prior years
accumulates in the filtering distribution and aids in
making better predictions.

5 Discussion

We have proposed and demonstrated D-CODE, a
model for Euclidean embedding of co-occurrence data
over time by formulating the problem as a factored
state space model. Aside from this novel formulation

of dynamic embedding, the resulting model is unique
in its probabilistic treatment of the coordinates, mod-
eled as latent variables with posterior distributions
rather than the point estimates of previous models.

While the approximation applied to yield a tractable
observation model is uncontrolled, the visualizations
in Sections 4.3 suggest that the model obtained still
preserves important correlations in the posterior, and
the NIPS author prediction results(Section 4.5) con-



firm that these correlations in the posterior translate
into superior performance in realistic scenarios. These
results also indicate benefits of modeling the dynamics
in the data for prediction purposes, and not just for
obtaining smooth temporal visualizations.

There are several possibilities for future work. There
may be a choice of different approximations for the
observation model that lead to dynamic models of dif-
ferent kinds, such as particle filters. A Markov Chain
Monte Carlo simulation of the exact observation model
would allow us to compare the exact shape of the pos-
terior with our Gaussian approximation. There is also
room for improvements in the computational aspects.
Increasing the numbers of authors and words, or in-
creasing the number of embedding dimensions, both
linearly affect the size of the precision matrix that is
inverted in the Kalman filter update steps. However,
sparseness properties of this matrix could be explored
and utilized for faster filtering.
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Appendix

In this section we give some details of the derivations.
We approximate the log-normalizer of the distribution
in order to get a Gaussian observation model. We will
now look at the log-likelihood in (2). Let us examine
the first part. We ignore t here for simplicity.

−
∑

ai

∑

wj
p̄(ai, wj)||φi − ψj ||

2

= −
∑

ai

∑

wj
p̄(ai, wj)(φi − ψj)

T (φi − ψj)

= −ΘT Λ̃Θ

(14)

By moment matching, we get Λ̃ as in (10). We now lin-
earize the second part of (2), i.e. log Z using a Taylor
approximation around Φ and Ψ. We do a first-order
Taylor expansion around Z leading to Equation (6).
This is followed by a second-order Taylor expansion

of the exponentiated distance term e−(φi−ψj)
T (φi−ψj)

around ξi, ζj , resulting in (7).

The second-order approximation g([φT
i ψT

j ]), equa-
tion (7), becomes

= 1 + φT
i ∇1 + ψT

j ∇2 + 1
2 [φT

i ψT
j ]H(ξi, ζj)[φ

T
i ψT

j ]T

= 1 + φT
i ∇1 + ψT

j ∇2

+ 1
2 [φT

i H11φi + ψT
j H21φi + φT

i H12ψj + ψT
j H22ψj ]

(15)
where H(ξi, ζj) is the Hessian evaluated at ξi, ζj , (9).
Also ∇1(ξi, ζj) and ∇2(ξi, ζj) are the gradients w.r.t.
φi and ψj respectively, also evaluated at ξi, ζj , (8). For
convenience, define η to be a vector of length 2(A+W )
and Λ to be a symmetric matrix of size 2(A + W ) ×
2(A + W ), as in (11) and (12). By i we denote author
i and by j we index word j.

Now using (11), (12) and (15), log Z becomes:

log Z = log
∑

ij pipje
−(φi−ψj)

T (φi−ψj)

≈ C + λ[
∑

i φT
i ηi +

∑

j ψT
j ηj + 1

2 (
∑

i φT
i Λiiφi+

2
∑

ij φT
i Λijψj +

∑

j ψT
j Λjjψj)]

= C + λ(ηT Θ) + 1
2λ(ΘT ΛΘ)

(16)
All terms independent of µ,Σ were combined in the
constant term C. Using (14) and (16) we obtain the
approximate log-likelihood

log p(Ct|Φt,Ψt) = −ΘT Λ̃Θ − C − ληT Θ −
1

2
λ(ΘT ΛΘ)

= −C + (−ληT Θ) −
1

2
(ΘT (2Λ̃ + λΛ)Θ)

which gives us a Gaussian distribution with canonical
parameters as in (13).


