
A Scalable Distributed Algorithm for Shape Transformation in Multi-Robot
Systems

Ramprasad Ravichandran1, Geoffrey Gordon2, Seth Copen Goldstein3

1Robotics Institute, 2 Machine Learning Department, 3Computer Science Department
Carnegie Mellon University, Pittsburgh, PA 15213

{rravicha,ggordon,seth}@cs.cmu.edu

Abstract— Distributed reconfiguration is an important prob-
lem in multi-robot systems such as mobile sensor nets and
metamorphic robot systems. In this work, we present a scalable
distributed reconfiguration algorithm, Hierarchical Median De-
composition, to achieve arbitrary target configurations. Our
algorithm is built on top of a novel distributed median consensus
estimator. The algorithms presented are fully distributed and
do not require global communication. We show results from
simulations in an open source multi-robot simulator.

I. INTRODUCTION

In this work we look at the geometric-formation problem
where a group of robots is given a specific target configura-
tion. This problem finds many useful applications in modular
robot systems and mobile sensor networks. In modular robot
systems (e.g., [11]), often, the main task is to reconfigure
into different shapes. In mobile sensor networks, a scenario
involves an ad-hoc deployment of mobile sensors which
may then be required to rearrange into specific (possibly
disconnected) formations to perform their assigned tasks
(Figure 1).

Each robot in the system is usually equipped with a
minimal set of sensors, actuators, processor and memory.
Typically, each of these individual robots are very cheap
to manufacture, and their homogeneity makes the system
robust because no single robot is critical to the mission.
The simplicity of the modules come at the cost of increased
control complexity. Control in such robotic systems is de-
centralized, and communication is generally restricted to
immediate neighbors. Apart from the above general chal-
lenges, geometric-formation has the additional challenge
that the robots know only their own positions and have
no information about the locations of other robots in the
ensemble. In sensor networks, depending on the type of
deployment (aerial or manual), the robots may not even know
the initial shape of the ensemble.

The problem of deploying agents to form arbitrary target
configurations with distributed decision-making and limited
communication is still open [10]. In this paper, we present
an initial solution to this problem using a novel distributed
median consensus estimator to establish a bijection between
the initial positions of the set of agents and the set of target
positions. Each robot requires O(log(n)) memory to achieve
this bijection. (The focus of this work is in establishing this
bijection, and not in the motion plan of the modules. [14] is

Fig. 1. An example scenario for disconnected deployment of mobile sensor
nets.

a good reference for solutions to the latter problem.)

II. RELATED WORK

Reconfiguration of formations has been an active topic in
the past decade. We highlight some of the related work in the
sensor networks literature. Most of the past work has been
on network reconfiguration in response to some stimulus or
performance objective such as event monitoring [4], coop-
erative control [1], controlling node density [19], network
coverage [5], or formation control [20]. Works such as [2],
[7] looked at behavior-based approaches to maintain robot
formations. In [9], the authors use an energy minimization
technique to achieve target configurations. While this works
for connected target configurations, it doesn’t lend itself to
problems, such as Figure 1, where the destination configu-
ration is disconnected.

The current work is most related to [6], where the authors
use a small number of leader nodes to reposition the agents.
Unlike their approach, our algorithm requires neither leaders
nor the knowledge of the initial network shape.

III. THEORY

In this section we discuss the theory behind our distributed
median consensus estimator. First, we talk about the dis-
tributed mean consensus algorithm, followed by a discussion

of Lyapunov-based proofs. We then discuss the distributed
median consensus estimator and provide mathematical intu-
ition suggesting that it converges.

A. Background

1) Distributed Mean Consensus: In distributed consensus,
a set of networked agents with possibly different initial
estimates of a global variable try to reach an agreement
on the value of the variable, using limited storage and
computation at each agent. In distributed mean consensus,
the desired consensus is the mean: each agent knows a
number zi, and the problem is to compute 1

n

∑
i zi.

Consider a system of agents whose interaction topology
is represented by the undirected graph G(V,E), where V =
{1, 2, . . . , N} is the set of agents and E ⊆ V × V is the set
of communication links between agents. Let xi(t) denote
agent i’s estimate of the mean at time t. It has been shown
(e.g. [16]) that the following simple linear system achieves
mean consensus:

µẋi(t) =
∑

{i,j}∈E

(xj(t)− xi(t)) (1)

Here 1
µ is a gain parameter. In (1), we initialize xi(0) = zi

for each agent; the limiting value of xi is the same for all
agents, and is the desired mean consensus. More recent work
has shown that similar systems can work in networks with
dynamic topology and communication delays [17].

Eq. 1 can be written using a Graph Laplacian Operator:

µẋ = −Lx (2)

where L denotes the Laplacian of the connectivity graph G.
If di is the degree of node i, the Laplacian L is defined as

Lij =

 di if i = j
−1 if {i, j} ∈ E

0 else
(3)

Eq. 2 works only if the zi values are static. If the agents have
dynamic values, say zi(t), then we can implement forgetting:

µẋ = −Lx + γ(z − x) (4)

Large values of the forgetting factor γ mean that we get rid
of old information quickly, but unfortunately also introduce
a bias so that the limiting values of xi are no longer exactly
the same for all agents. To get rid of the bias, we can add
integrator variables αi [8]:

µẋ = −Lx + γ(z − x)− Lα (5)
µα̇ = Lx (6)

2) Lyapunov Stability: We use Lyapunov functions [15]
to prove convergence. A continuous scalar function V (x) :
<n → <+ is a Lyapunov function in an open region U ⊂ <n

containing 0 if and only if:
• V (x) > 0 everywhere in U except V (0) = 0.
• V̇ (x) < 0 everywhere in U except at x = 0.

(We could equally well pick the minimum of V to occur
somewhere other than x = 0, and let the minimum value

of V be an arbitrary finite number.) One way to interpret
Lyapunov stability is by analogy to a physical system with
state x that loses energy V (x) over time. Such a system must
finally come to rest at a state of minimum energy.

B. Distributed Median Consensus

We now look at the central problem which will allow us
to build our hierarchical decomposition: finding the median
of the agents’ variables.

Let xi(t) denote agent i’s estimate of the median of zi(t);
gi(t) ∈ [−1, 1] denote agent i’s estimate of whether zi(t)
is above or below the median; and fi(t) denote agent i’s
estimate of the mean of the gi(t) votes. The sign of fi tells
us the side of the median where agent i believes a majority
of the zi values lie. So, if fi(t) = 0, agent i believes exactly
half of the agents lie on each side of the median estimate—
the desired outcome. We update these estimates according to
the following nonlinear system:

ġ = −δ(g − sgn(z − x)) (7)
µ1ḟ = −(L + γI)f − Lα + γg (8)
µ1α̇ = Lf (9)

ẋ = −µ0Lx︸ ︷︷ ︸
fast

+ µ2f︸︷︷︸
slow

(10)

initialized with f(0) = g(0) = α(0) = 0 and x(0) = z(0).
Eq. 7 makes gi(t) tends toward +1 when agent i’s input

zi is greater than its median estimate xi, and −1 when it
is less. Eqs. 8–9 are similar to Eqs. 5–6: f is a consensus
estimate of the mean of g, and α is an integrator variable. In
Eq. 10, f provides feedback to servo the median consensus
estimate to settle at the true median of the system.

We use multiple time scales here to encourage the coupled
estimates to converge [12]. We choose scales so that µ0 is the
fastest dynamics, and µ2 is the slowest; µ1 is intermediate.

C. Convergence of the Median Estimator

In this subsection, we give an intuitive argument for the
convergence of our median consensus estimate (Eqs. 7, 8, 9
and 10). We do not yet have a proof of convergence.

We first show the convergence of Eqs. 8 and 9 for fixed
g. (See [8] for an alternate proof which covers varying g.)
Rewriting Eqs. 8–9 in matrix form, we have:[

ḟ
α̇

]
=

[
−(L + γI) −L

L 0

]
︸ ︷︷ ︸

M

[
f
α

]
+

[
γI
0

]
g (11)

The gain matrix (M) can be written as a sum of a negative
semi-definite matrix (N) and a skew-symmetric matrix (S):

M =
[
−(L + γI) 0

0 0

]
︸ ︷︷ ︸

N

+
[

0 −L
L 0

]
︸ ︷︷ ︸

S

(12)

So, M is negative semi-definite, which means that the system
8–9 converges to the set (ḟ , α̇) = 0. Hence, at convergence:

−(L + γI)f − Lα + γg = 0 (13)

Lf = 0 (14)

So long as the graph G is connected, Eq. 14 implies that f
is a multiple of 1̂, the vector of all ones. Substituting Eq. 14
into Eq. 13 and dividing through by γ we get:

f +
Lα

γ
= g (15)

Since Lα has no component along 1̂, f must be the projec-
tion of g onto 1̂. Hence each element of f is equal to the
mean of g. (Note that α may be arbitrary, which is not an
issue as we are only concerned about the convergence of f .)

Now return to the full system (7–10). Since µ0 is the
fastest dynamics in the system, as far as the rest of the system
is concerned we are effectively operating under the constraint
Lx = 0, so that x is a multiple of 1̂. And, since µ2 is the
slowest dynamics, x is effectively constant in Eq. 7 (after an
initial transient while Lx converges to 0).

Taking these two assumptions into account, Eq. 7 is
effectively just a proportional controller acting on a constant
input x = 1̂〈x〉. (Here 〈·〉 denotes the average of a vector’s
elements.) So, gi converges to the sign of zi − 〈x〉 for all
i. Once the gi variables converge, Eqs. 8–9 are a mean
consensus, and so fi converges to 〈g〉 for all i.

Now, since µ1 is adjusted to be faster than µ2, we can
assume that ḟ = 0 while analyzing Eq. 10. Substituting this
assumption into Eq. 10 yields

ẋ = −µ0Lx + µ2〈sgn(z − 〈x〉)〉1̂ (16)

Below, we argue that Eq. 16 converges. And, if Eq. 16
converges, we must have

µ0Lx = µ2〈sgn(z − 〈x〉)〉1̂

which implies that 〈sgn(z − 〈x〉)〉 = 0 and Lx = 0, since
Lx has no component along 1̂. These two properties, in turn,
imply that each element of x is the median of the zis, as
desired.

So, if we can choose our gains µ0, µ1, µ2 so that Lx ≈ 0,
x is effectively constant in Eq. 7, and f is effectively constant
in Eq. 10, we will get convergence. We have not been able to
show that such gains always exist; however, our experiments
suggest that we may be able to find good gains in practical
examples.

It remains to argue that Eq. 16 converges. Let max{xi(t)}
denote the maximum median estimate among all agents at
time t, and min{xi(t)} denote the minimum. Then we will
claim that

V (x) = V1(x) + V2(x)

= [max{xi(t)} −min{xi(t)}] +
∑

i

∣∣〈x〉 − zi

∣∣
is a Lyapunov function for Eq. 16.

First, V1(x) is positive except when x is a multiple of
1̂. And, the second term in Eq. 16 does not alter V1(x), so
V̇1 = −µ0

dV1
dx · Lx.

Now, dV1
dx is +1 if xi(t) = max{xi(t)}, −1 if xi(t) =

min{xi(t)}, and 0 otherwise. If xi(t) = max{xi(t)}, then

the ith component of Lx is positive, since xi(t) ≥ xj(t)
for all neighbors j of i; similarly, if xi(t) = min{xi(t)},
then the ith component of Lx is negative. So, every term
in dV1

dx · Lx is nonnegative, which means V̇1 ≤ 0. In fact,
V̇1 = 0 iff Lx = 0 iff V1 = 0.

V2(x) achieves its minimum exactly when 〈x〉 is equal
to the true median zmed. So, V1 and V2 are simultaneously
minimized (i.e., x is a multiple of 1̂ and 〈x〉 = zmed) exactly
when x = zmed1̂. So, V is a Lyapunov function. We also
have

V̇2 =
∑

i

sgn(〈x〉 − zi)
1
n

1̂ · ẋ

=
∑

i

sgn(〈x〉 − zi)(µ2〈sgn(z − 〈x〉)〉)

since 1̂ · Lx = 0 and 1̂ · 1̂ = n. So,

V̇2 = µ2n〈sgn(〈x〉 − z)〉〈sgn(z − 〈x〉)〉

which is negative unless zmed = 〈x〉 already. So, V is a
Lyapunov function for Eq. 16.

IV. THE HMD ALGORITHM

The Hierarchical Median Decomposition Algorithm
(HMD) uses the above median estimator iteratively to estab-
lish a bijection between the agents and the target locations.
We discuss the algorithm after listing some assumptions.

A. Assumptions

Initial configuration is connected. Any agent can com-
municate with any other agent (though it may take more
than one hop). It is important to note that the agents need
not know the initial configuration of the ensemble.

Agents have a consistent coordinate system. We require
the agents to have a consistent coordinate system and know
their location in the coordinate system. This can be achieved
in many ways. For example, they can be equipped with GPS,
or they can be equipped with a simple compass and a relative
coordinate system can be established algorithmically [18].

Agents have at least a coarse representation of the
target configuration. In smaller systems with 10–100 sen-
sors, it may be easy to store all the exact target locations
in each sensor. But in metamorphic robots or other large
systems where the number of modules can easily reach tens
of thousands, it might be more efficient for each module to
store only a coarse representation of the target configuration,
e.g., an image. In case a coarse representation is used, the
final positions of the agents will be uniformly distributed in
the target region.

B. Algorithm

The HMD algorithm consists of two phases: 1) Every
agent ascertains their position relative to other agents in a
distributed manner, and 2) Every agent then uses this relative
position to establish its position in the target shape.

Establishing relative position. This part of the algorithm
essentially builds a kd-tree [3] in a distributed manner. The
pseudo-code for this part is given in Figure 4.

Fig. 2. Iterative Application of the Median Estimator to establish relative
position. Also depicts the construction of an ID for an arbitrary node.

Fig. 3. Using the relative position in the initial configuration (Left-hand
side) to determine the position in the final configuration (Right-hand side).
Numbers indicate order of the splitting planes. (A) depicts an instance where
an approximate map is known. (B) depicts an application for an exact final
formation.

In the first iteration, all agents try to achieve consensus on
the median value of the x-coordinate values of their position
(Figure 2, Step 1). The agents first initialize their ID by a
literal indicating the side of the median that they lie on (either
(L)eft or (R)ight). After achieving consensus, each group of
agents with the same ID, in parallel, achieves consensus on
their Y-coordinate values (Figure 2, Step 2), and appends to
their ID a literal ((U)p or (D)own). This median consensus
takes place iteratively among the agents with the same ID,
and at the end of each iteration, the number of agents with
the same ID reduces until each agent has a unique ID.

Thus, when the kd-tree is completed, each agent is as-
signed an ID that is both unique and also determines the

1 ID = [];
2 NbrSet = NEIGHBORS-WITH-SAME-ID(ID)
3 while (NbrSet is not empty)
4 xmed = GET-MEDIAN-CONS(NbrSet,ID,Zx)
5 if (Zx > xmed)
6 ID = APPEND-TO-ID(ID,R)
7 else
8 ID = APPEND-TO-ID(ID,L)
9 endif
10 ymed = GET-MEDIAN-CONS(NbrSet,ID,Zy)
11 if (Zy > ymed)
12 ID = APPEND-TO-ID(ID,U)
13 else
14 ID = APPEND-TO-ID(ID,D)
15 endif
16 endwhile
17 return ID

Fig. 4. Pseudo code for Phase 1 of the HMD algorithm

relative position of the agent in the system.
Establishing final position. In this part of the algorithm

the agent tries to determine its unique final location in the
target configuration. This step is basically the reverse of the
previous step (see right side of Figure 3).

Each agent loops through every literal in its ID (con-
structed in the previous stage), and cycles through the
coordinate axes to select the splitting planes in the target
shape. At each step, the point selected to create the splitting
plane is the median of the points being put into the kd-tree,
with respect to their coordinates in the axis being used. It is
possible to do this a priori as each agent knows the entire
final (coarse or fine) representation.

V. IMPLEMENTATION

We implemented the HMD algorithm in DPRSim [21], a
multi-threaded open-source simulator for testing distributed
algorithms for large scale multi-robot systems. The simulator
is written in C++ and every agent runs as a separate thread
to support the asynchronous nature of the agents. During the
actual implementation of the algorithm, we faced challenges
in practical scenarios. We list some of the implementation
caveats below.

Heuristic for detecting end of a median consensus
stage. The HMD algorithm consists of multiple consecutive
runs of the median consensus estimator. To determine when a
run of the median consensus estimator terminates, we use the
trailing history of the maximum and the minimum of O(n)
consecutive fi(t) values. If the difference between max and
min remains below a small threshold, then we start the next
run of the median consensus estimator. In practice however,
we can get away with waiting for far fewer than O(n) steps.
Typically, we can start the subsequent run of the median
consensus while still participating in the current run since
the rare case of being initially misclassified in the subsequent
run does not affect previous runs of the median consensus.

Fig. 5. Time taken for a single iteration of the Median Estimator to converge.

This is because the information flow is unidirectional from
the previous run to the next run.

Tie-breaking using perturbations. In lattice-based sys-
tems such as Claytronics [11], multiple agents may share the
same x or y coordinates. Since the median planes are parallel
to the coordinate axes, the median plane might contain a
set of such points, and classification might become more
difficult. We circumvent this problem by perturbing the true
position and report the perturbed value as our zi(0).

Agents that lie on the median. If there are an odd number
of agents, then an agent is bound to be on the median. Hence,
instead of having two values for each literal in the ID, we
use three values. E.g., instead of (L)eft and (R)ight, we use
(L)eft, (C)enter, and (R)ight.

Singular target configurations. We also deal with sin-
gular target configurations like straight lines by imposing
constraints on the aspect ratios of each module’s area in
the final configuration. For instance, suppose the target
configuration does not permit splitting along the Y-axis (for
example, a line of 4 agents aligned with the Y-axis). In this
case, we constrain all subsequent splitting to be parallel to the
X-axis. Since the agents know these constraints and the target
configuration beforehand, the change in the splitting pattern
is deterministic. Hence, we have a unique target location
assigned to each agent.

VI. EVALUATION

A. Methodology

In this section we discuss the experiments we ran to
demonstrate the feasability and scalability of the median
consensus estimator and the HMD algorithm. We set up
an M × M area in simulation with N nodes. The nodes’
locations are sampled from a uniform distribution, with
rejection sampling so that the corresponding adjacency graph
has a single connected component. (Note that the uniform
distribution tends to lead to well-connected communication
graphs compared to some other initial distributions, so scal-
ing performance might be different with different initial

conditions.) We vary the number of nodes N from 2 to 128
to study the scalability of the algorithms. We also vary the
radio range r of the nodes to study the role of the underlying
graph’s connectivity. We similarly generate random target
configurations, and average over multiple trials to arrive at
each data point.

We say that a system has converged at some t if for some
chosen ε, maxτ ∈ (t,∞) |x(t) − x(τ)| ≤ ε. To measure the
quality of HMD’s matching, we use the sum of individual
distances travelled by the agents between the initial and final
positions, i.e.,

perf =
∑
i∈V

‖posinitial,i − posfinal,i‖ (17)

B. Evaluation of the Median Estimator

In this subsection we study the performance of the median
estimator. We first varied the number of nodes in the graph
from 2 to 128 nodes while measuring the convergence time
of the estimator. Figure 5 shows the result of this experiment.
We see that the convergence time is nearly linear in the
number of nodes.

An anomaly we notice is that experiments with very
few nodes exhibit a similar convergence time. We attribute
this to the fact that all the experiments have an almost
constant startup delay due to the simulation environment.
This startup cost is comparable to the convergence time of
the experiments with the lower number of nodes.

We also examined the influence of connectivity of the
graph on the convergence time by keeping the number of
agents fixed at 50 and varying r. We show the dependence
of the convergence time on the average degree of the graph
in Figure 5. As expected, the convergence time drops rapidly
as the degree of the graph increases.

C. Evaluation of the HMD Algorithm

In this subsection we benchmark the running time and
matching quality of the HMD algorithm. Figure 6 (top)
shows that the runtime scales almost linearly with the number

Fig. 6. Performance Comparison of the HMD algorithm.

of modules. Figure 6 (bottom) compares the matching quality
of the HMD algorithm to optimal, worst- case, and random
matchings. We use the centralized Hungarian algorithm to
compute optimal matchings. It is important to note that this
is an “unfair” comparison: to the best of our knowledge,
there is no distributed version of the Hungarian algorithm
that is suitable for our application.

VII. CONCLUSION AND DISCUSSION

We presented the HMD algorithm, a scalable distributed
reconfiguration algorithm for multi-robot systems. HMD
was built on top of a novel distributed median consensus
estimator, and leverages the median consensus estimator in a
hierarchical fashion to achieve a bijection between the nodes
and the target locations. Our simulations in an open source
multi-robot simulator demonstrated that the median estimator
as well as the HMD algorithm scale well with increasing
number of nodes and network connectivity. Further, our
simulations demonstrate that the HMD algorithm performs
nearly optimally on the examples considered: distance trav-
eled is comparable to the centralized Hungarian method.

Currently we are analyzing the convergence rates and
robustness of the median consensus. We are also incor-
porating other metrics in the HMD algorithm to support

holonomic multi-robot systems with constraints. Lastly, we
are analyzing the quality of the matching computed by
the HMD algorithm, as compared to the optimal matching
computed by the centralized Hungarian method.

ACKNOWLEDGEMENT

This work was supported in part by NSF CNS-0428738,
and Intel Corporation. We would also like to thank the
Claytronics group at Carnegie Mellon for the helpful discus-
sion, and Prof. James Kuffner in particular, for his valuable
thoughts.

REFERENCES

[1] R. Bachmayer and N. E. Leonard. Vehicle Networks for Gradient De-
scent in a Sampled Environment. In Proceedings of IEEE Conference
on Decision and Control, 2002.

[2] T. Balch and M. Hybinette. Behavior-based coordination of large-
scale robot formations. In Proceedings of the Fourth International
Conference on Multiagent Systems (ICMAS ’00), pages 363 – 364,
July 2000.

[3] J. L. Bentley. K-d Trees for semidynamic point sets. In Proceedings
of Symposium on Computational Geometry, 1990.

[4] Z. Butler and D. Rus. Event-based motion control for mobile sensor
networks. IEEE Pervasive Computing, 2(4), October 2003.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for
mobile sensing networks. In Proceedings of IEEE ICRA, 2002.

[6] J. C. Derenick, C. R. Mansley, and J. R. Spletzer. Efficient motion
planning strategies for large-scale sensor networks. In WAFR, 2006.

[7] J. Fredslund and M. Mataric. A general algorithm for robot formations
using local sensing and minimal communications, 2002.

[8] R. A. Freeman, P. Yang, and K. M. Lynch. Distributed estimation and
control of swarm formation statistics. In Proceedings of American
Control Conference, 2006.

[9] A. Ganguli, J. Cortes, and F. Bullo. On rendezvous for visually-guided
agents in a nonconvex polygon. In Proceedings of IEEE CDC-ECC,
2005.

[10] A. Ganguli, S. Susca, S. Martinez, F. Bullo, and J. Cortes. On
collective motion in sensor networks: sample problems and distributed
algorithms. In Proceedings of IEEE CDC-ECC, 2005.

[11] S. C. Goldstein, J. D. Campbell, and T. C. Mowry. Programmable
matter. Computer, 38(6), 2005.

[12] P. Kokotovic, H. Khalil, and J. O’Reilly. Singular perturbation methods
in control: Analysis and design. Academic Press, pp. 344, 1986.

[13] H. W. Kuhn. The hungarian method for the assignment problem. In
Naval Research Logistic Quarterly, pages 83 – 97, 1955.

[14] S. M. LaValle. Planning Algorithms. Cambridge University Press.
[15] A. Lyapunov. Stability of Motion. Academic Press, New-York and

London, 1966.
[16] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and R. Murray.

Asynchronous Distributed Averaging on Communication Networks.
IEEE Transactions of Networking, August 2007.

[17] R. Olfati-Saber and R. M. Murray. Consensus Problems in Networks of
Agents with Switching Topology and Time-Delays. IEEE Transactions
on Automatic Control, 49, September 2004.

[18] G. Reshko. Synthetic reality: Communication and localization. Mas-
ter’s thesis, Carnegie Mellon University, August 2004.

[19] B. Zhang and G. S. Sukhatme. Controlling sensor density using
mobility. In Proceedings of IEEE Workshop on Embedded Networked
Sensors, 2005.

[20] F. Zhang, M. Goldgeier, and P. S. Krishnaprasad. Control of small
formations using shape coordinates. In Proc. of IEEE International
Conf. of Robotics and Automation, 2003.

[21] DPRSim. http://www.pittsburgh.intel-research.net/dprweb/.

