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ABSTRACT In practice, there is a twstep process for inferring student
Bayesian Knowledge Tracing (BKT) is a common way of kn_owle_dge. In the _first stepndMM is Iearned_for each topic or _
determining student knowledgsf skills in adaptive educational ~ SKill within a tutoring syste based on the history of studentsO
systems and cogie tutors. The basiBKT is a Hidden Markov interaction with t_he system. The outpu_t of this step is a set of
Model (HMM) that models student knowledge based dive parameters (t_)a5|c parameters BKT: prior, learn rate,_forget,
parameters: prior, learn rat@rget, guess, and slipExpectation guess, and slip), which is usedthe second step to e_stlmate the
Maximization (EM)is often usedo learntheseparameterdrom mastery level of eachwsient.A popular methodor the first step

training data. HowevelEM is a timeconsuming procesand is learning parameters from training datais Expectation
prone to converging to erroneousimplausible local optima ~ Maximization (EM). However, EM is a time consuming process
depending on the initial values die BKT parametersin this and previous studie2,3,11,14]have shown that can onverge
paper we addreghesetwo problems byisingspectral learningo to erroneous learned parametatspendingn their initial val_ues.
learna Predictive State Regsentation (PSRthat representthe To address these probleymee propose an alternate methidst
BKT HMM. We then use a heuristic to extract the BKT We use a spectral learning methpf to learn a Predictive State
parameters from the learned PSR using basic matrix operationsRePresentatiofiLs] of the BKTHMM directly from theobserved
The spectrallearning method is based onan approximate history of studentsO interactidien we use &euristicto extract
factorization of the estimated covariancé windows from the parameters dKT directly from the PSROur resultsshow
students® sequences of correct and incorrect respitrisefast, that the learned PSR captures the mtsskfeatures of the training
locaoptimumfree, and statistically consisterih the past few data,_ a_llowmg Zomputationally eff|C|e_nt angractically effective
years, spectral techniques have been usegahworld problems prediction of BKT parametersin particular, wedecreasedhe

involving latent variables in dynamical systemsmputer vision time spenbn learningthe parameters KT by almost 30 times
and natural language processin@ur results suggeshat the on averagecompared toEM, while keeping themeanaccuracy
parameters learned bihe spectral algorithmtan replace the ~ @nd RMSEof predicting studentsperformance onthe next
parameterdearnedby EM: the results of our study show tiae questionstatistically the same Furthermore, by initializing EM

with our extracted parameters, we can obtain improvements in

spectral algorithmcan improve knowleds tracing parameter
b g b ag gp accuracy and RMSE.

fitting time significantly while maintaining the sanpeediction
accuracy or help to improve accuracy while still keeping This paper is organizess follows:Section 2orovides a background

parametefitting time equivalent to EM on BKT parameter learning and spectral leagnof the parameters
Kevwords in PSRs Section 3 describes our methodology and setting
y Section 4 we present the detailed results of our expesnasat
Bayesian Knowledge Tracing, Spectral Learning compare the BKT modiewith our model from several points of
view. We provideanalysis and justification of the resutsSection
1. INTRODUCTION 5. Finally, Section 6 ionclusion and future work.

Hidden Markov Models and extensions have been one of the most

popular techniques for modeling complex patterns of behavior, 2. BACKGROUND

especially patterns that extd over time. In the case BKT, the In BKT we areinterested ina sequence of student answers to a
model estimates the probability of a student knowing a particular series of exerciseon different skills (KCs) in a tutoring system
skill (latent variable) based on the studentOs past history of incorred6]. BKT treats each skill separately, and attempts to model each

and correctattempts at that skillThis probability isthe key value skill-speific sequence usinglginary modelof the studentOs latent
used bymany cognitive tutorsto determine whetthe studentas cognitivestate(the skill islearnedor unlearned) Treating state as
reachedmastery ina skill (also called &nowledge Componenbr Markovian, we therefore have five parameters to expaident

KC) [17]. In an adaptive educational system, this probability can be mastery in each skill: probabilities for initial knowledge,

used to recommend personalizedriéng activities based on the knowledge acquisitionforget, guess, and slipHowever, in

detailed representation of student knowledge in different topics. standard BKT [6], it is typical to neglect the possibility of
forgetting, leaving four free parameters.

The main benefit othe BKT model is that it monitors changes in
student knowledge state during practice. Each time a student
Conference’10, Month 12, 2010, City, State, Country. answers a question, the model updates its estimattetherthe
Copyright 2010 ACM 158113000-0/00/0010 E$15.00. student knows the skibased on the student@swer the HMM
observation)However,the typical parameter estimation algorithm
for BKT, EM, is prone toconverging to erroneouscal optima
depending onnitialization. On the other hand, in the past few



years, researchersave introduced a generalization of HMMs
called Predictive State Representations (PSHES$) that can be
extracted from the data using spectt@arningmethods[8]. The
new learning algorithm usefficient matrix algebra techniques
which avoid the local optima problems of EM(or any other
algorithms based on maximizing data likelihood over the HMM
parameter spag@ndrun in a fraction of the time of EMn this
section we first review the EM parameter learningB&fT and
thenprovide a brief background on spectral learning of PSRs.

2.1 EM Parameter Learning of BKT

The main problem wittBBKT parameter learning by EM is the
initial values The EM algorithmis an iterative processIn each
iteration we first estimate thelistributions overstudents® latent

2.2 Spectral Learning of PSRs

A Predictive State Representation (PSR)] is a compact and
complete description of a dynamical system PSR can be
estimated froma matrix of conditional probabiliies of future
events fests Or characteristic events) given past eventghistories

or indicative events). If the true probability matrix is generated
from a PSR or an HMM, then it will hadyew rank; so,spectral
methods can approximate a PSR well from empirical estimates of
the probabilities[4,58,15] (In practice we estimate a similarity
transform of the PSR parameters, known @sasformed PSRL5].)

We use in particular the spectral algorithmBaibts& Gordon[5]
[4]. They appliedtheir method in several applications and
compare the results with competing approachks.particular,

knowledge states, and then update the BKT parameters to try tadhey tested the algorithm by learning a model of a -high

improve theexpected logdikelihood of the training datgiven our
latent state distribution estimatef\s mentioned beforethe
iterative nature oEM means that ifs proneto geting stuck in

dimensional visiorbased taskand showed that the learned PSR
captures the essential features of #mvironmat effectively
allowing accurateprediction with a small number gfarameters

local optima.To remedy this problem, researchers often use Our workusestheir published cod&

multiple runs of EM from different starting points; howevtre
multiple runs can be timeonsuming. Calculating the log
likelihood of the model in each iteration also involves going
through all the training data which further exacerbates the
runtime problemespecially with large datsets.

There are number atudies that try to handle the problems of EM
parameter learning bgifferent approaches. In ba®T [6], the
authorstried to solve the problem by imposing a plausitaege

of values for eachparamete for example setting the maximum
value forthe guess parameter to be 0.Fmilar approachebave
been applied by2] and[4]. Another study{12] tried to address
the local optimumproblem by modifying the structure of BKT
and usinginformation from multiple skills toestimate each
student's prioin particular skillsThe sasme group made an effort
[13] to improve BKT by clustering students based on their

performance and using different models for students in different

clusters.

Beck & Chand3] discussednother fundamental problemalled
identifiability, with learning BKT parameters bymaximum
likelihood. In their work, they showed thdifferent sets oBKT

parameters could lead to identical predicsioof student

expert knowledge but the other set with identicdit tends to
predict that the students are more likety answer a question
wrong when they mastered the skill. Thegcommendhe same

approach of constraining the values of the parameters into a

plausible range based on the domain knowledijgile these
studies elucidated the problem of identifiability andeaules of

thumb to follow in order to arrive at plausible parameters, these
rules are often specific to a particular domain and do not

necessarily generalizbloreover,constraining EM to move inside

a preknown parameter space is not triviahd in may caseghe
optimizerends up exceedingts iterationthresholdwalking along
the boundaries afhe parameter space without converging to the
maximumlikelihood value

Pardos & Heffernaifil1] suggested running grid search over the
EM parameter initialization space &KT to try to find which
initial values led togood or badlearned parametersThey

analyzed the learned parameters and tried to find boundaries fo
the initial values not based on plausibility but based on the exact
error. They showed that choosing initial guess and slip values that

summed up to less than onends tdead EM to converge toward
theexpertpreferred parameter set

3. METHODOLOGY

We propose replacing the paramdearning step of BKTwith a
spectral method. In particular, we use spectral learning to discover a
PSR from a small number sifficient statistics of the observed
sequences of student interactions. We then use a heuristic to extract
an HMM that approximates the learned PSR and read the BKT
parameters off of this extracted HMM. We can finally use these
parameters directly to @state student mastery levels, and evaluate
prediction accuracy wittour methodcompared tothe standard
EM/MLE method of BKT parameterfitting. We call the above
method Ospectral knowledge tracingd or SK&.alsoevaluated
usingthe learnegarameters asitial valuesfor EM in order toget
closer to the global optiom. Due tothe fact thasspectral method
does not attempt to maximize likeliho@hd alscsome noise in the
translation of the PSR to BKT parameters, the returned BKT
parameters are close tthe global maximm, but further
improvement is available with few EM iterations The rest of the
section presents a short description of the data along with a brief
summary of our student model and analysis procedure.

3.1 Data Description
Our data comes froran online sefassessment tool QuizJET for

Yava programming. This tool is a part of an adaptive educational

system JavaGuidg7] that keeps detailed track of studentsO
interaction to provide adaptive navigation support. The system
presents and evaluateparameterized questions to students
(programming question templatiited in with random parameters);
students can trgifferent versions of the same question several
times until they acquire the knowledge to answer them correctly or
give up. Therare atotal of 99 question templatesategorizednto

21 topicswith amaximumof 6 question templates witha topic

We consider each topic ask& and each question template as a
Steptoward mastery of thKC. Based on the definition of BKT and

KC [6,17] we are only considering the first attempt of each student
on each question template, assuming that if a student tried a
question template several times until succdssy till answer the
next question within the topic correctly on the first attempt. This
mapping is more coarggained than the original definition of KC
;since we are not dealing the data from an intelligent tutoring system.
However, the question templatase designed isuch away that
answering all of them correctly will result in mastery of the topic.

! http://iwww.cs.cmu.edu/~ggordon/spectigdrning/
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Figure 1: Student view of a question template for the skill
“Do-While-Loops”.

Figure 1 shows a stud# view of an example question template.
The student can select a topic from the left pane to expand th
question templates under each topic. Then s/he caanswering
any of the questichunder the topicrepeatedlywhether s/he
answers it right or wran The system has bedn use inthe
introductory programming classes at tSehool of Information
SciencesUniversity of Pittsburglior more than four years. In our
studywe usedatafor 9 semesterfrom Spring 20080 Fall 2012.
Tablel shows the distribution of records over the semesters.

Table 1: distribution of the records over the semesters.

Semester #Students | #Topics(Templatey | #Records
tried

Spring2008 15 18 (75) 427
Fall 2008 21 21 (96) 1003
Spring 2009 20 21 (99) 1138
Spring2010 21 21 (99) 750
Fall 2010 18 19 (91) 657
Spring2011 31 20 (95) 1585
Fall 2011 14 17 (81) 456
Spring2012 41 19 (95) 2486
Fall 2012 41 21 (99) 2017
Total 222 21 (99) 10519

The system had no majstructuralchanges since 2008, but the
enclosing adaptive system used some engagement techniques
order to motivate more students to use the sysfdns is the
main reason the number of recoisihigher in the Spring and Fall
semestes of 2012.

3.2 Student Model

A time-homogeneous, discrete Hidden Markov Model (HMM) is
a probability distribution on random variablelsc,! 1y}, y such

that, conditioned orx,%,), all variables before are independent
of all those afterr. The standard parameterization Fe ttriple
IT!I ) where

Pett!mp w1 fh bty 1]

et e, =g

! is a mapping from hidden states to output predicti@msl T is a
mapping between hidden state€onsidering our conditional
independence propertids,! , andr fully characterize the probability
distributionof any sequence of states and observaf@nsincethe
hidden stateB, are not directly observable from the training date
oftenuses heuristics like EM to finﬂt, i, " and# that maximize
the likelihood of the samples attte current estimatedn the BKT
setting,! is a2x! stochastianatrix, soit hastwo hidden parameters
P(learn) and P(forget isalsoa! x2 stochastianatrix, soit also
hastwo hiddenparameter®(guess) and P(slipAnd, « is a length

2 probability distribution, so it has one hidden parameter P(init).

Our main contribution is to try extracting these matrices from a
learned PSR, giving uthe benefit of significantly decreasing
training time and avoiding local optima. The details of the spectral
algorithm for learning the PSR from the sequence of action
observation pairs are beyond the scope of this paper and can be
efound in [4]. The algorithm gets a sequence of studéxisst
answes to differentquestion templatewithin a topic, andbuilds

a PR using spectral learning. The key parameters of this
particular implementation are window sizes used in creating state
estimates; we set theseng,,, = 10 andny, ! !. The outpus

of the PSRearnerare: first, theestimatedPSR parameted?so, !A! ,

and!”,, and second set of(noisy) stateestimate h,, each of
which represents a particular time pamthe inputsequenceWe
actually added dummy observations before the beginning and after
the end of each observation sequence, in order to make the best use
of our limited sample size; this means we get four mattigégom

the PSR learner, correspondinghie two original observations plus

the two dummy observations. We simply ignore the dummy
observations when converting to an HMM.

Nominally, the PSR parameters are related to the HMM parameters
by the equation§ ! hy, ! A, +4,, 1,1 I\ (Here0, is

the diagonal matrix with théth column of!” on its diagonal.)
However,there is an ambiguity in PSR parameterization: for any
invertible matrix! , we can replace each stdteby ! I',, as longas

we replacd”, by I I",1'! for 1l 11l When we use the modified
parameters to compute likelihoods, egelir! ' ' I cancels, leaving
the predictions of the PSR unchangesb, we have to choose the
right transformatioti to be ableto find parameter§ and! that
satisfy the conditions of BK{each element should leprobability
between 0 and, andcolumnsshould sum to )L

To pick the transformation matrix, we designed a heuristic that
looks at the state estimates we attempt to guess which points

in the learned state space correspond to the unit védtbisand

1111 in the desired transformation of the learned state space. (We
iBall these the Otransformation points.O) Given the transformation
points, the maix ! is determined. Our heuristic runs in time
linear in the length of the input sequence of correct/incorrect
observationsFigure 2 shows an overview of the transformation
process anéigure3 showsthe details of the heuristic.
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Figure 2: Overview of the transformation scheme.
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Figure 3: Our heuristic to find the transformation points

One slightly subtle point is that, due to noise in the parameter
estimates, no matter how we choose the transformatjotihe
matrices!; ! I,7'" may not be diagonal. In this case, we
simply zero out the offliagonal elements and renormalize.

3.3 Analysis Procedure

To evaluateour new parameter extraction methege compard

the results of our method witeM learningof BKT parametersis

a baseline. Wecompareboth runtime andhe ability to predict
students@orrect/incorrectanswer to the next questiofor the
latter, we calculate both Root Mean Squared Error (RMSE) and
prediction accuracypercent corref. We hypothesize that our
spectraimethod has better performanmempared to EMn regard

to the time spent on extracting the parametshsle keepingthe
same accuracy and RMS# predicting the studentsO answer to
the next questiorSince the paramate learned from the PSR are
an approximation of the actualobal besfit set of BKT
parameterswe also hypothesize that if we use thikem as the
initial parameters of EM, it will ragdt in a bettermodel inboth
accuracy and RMSE.

4. RESULTS

For the purpee of mimicking how the model may be trained and
deployed in a real world scenario, we learn the model from the
first semester data and test it on the second semester, learn th
model from the first and second semester data and test it on the
third semeste and so onln total, wecalculated results fot55
topic-semester pairsAll analysis was conducted in Matlain a
laptop witha 2.4 GHZntel” Core i5 CPU and 4 GB of RAM.

4.1 EM Results

In our experimentst took around 8 minutes for EM tofit the
parameers, which is on average 15 seconds for each -topic
semestepair. In 2 out of 155 cases, Efhiled to converge within
the 200iteration limit The average accuracy of predictirg
student@answer to the next question using the paraméarse

by EM is 0.650 with RMSE 00.464 Figure4 shows the boxplot

of the parameters learned by EM. The average sdhreprior,
learn, forget, guess and slip ade413, 0.162, 0.019, 0.431, 0.295.
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Figure 4: Boxplot of the parameters learned by EM

4.2 SKT Results

It took 1 minute 16 seconds in total for the spectral method to
learn the parametefer all semesters and topidbat is almosB0
timesfasterthan EM The average accuracy of predicting student
answer to the next questiond$64 and RMSE i6.463 Figure5
shows the boxplot of the parameters learne&Ky. The average
values for prior, learn, forget, guess and slip are: 0.52@68,
0.302, 0.397, 0.271 Note that thee values are substantially
different from those learned by EM, which means that the
calculated student mastery levels will also be different.
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Figure 5: Boxplot of the parameters learned by spectral
method

4.3 SEM Results

When we iitialized EM with the spectrally learned parameters
the total timewas 10 minutes and 40 secondbkat is still
substantially fastethan plain EM. As expected, the average
accuracy of predicting studen®sanswer to the next question
increased to 0.706and RMSE decreased to 0.42Better than
both previous modeld-igure 6 shows the boxplot of the refined
parametersThe averag®alues for prior, learn, forget, guess and
slip are:0.492,0.381, 0.36Q 0.391, 0.292
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Figure 6: Boxplot of the parameters learned SEM

4.4 Comparison

4.4.1 Time

To get a better understandiog the time complexity oEM and
SKT and their relation, weshow a semilog plot of the times
(Figure 7). We measure thelapsed timeof parametedearning
using the tic and toc function®f Matlah Both methodshave a
similar growthrate as wencrease the size dlfietraining dataas

Lowess smoother

<

2
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o4

T
-4 -3 -2 -1

SKT Log(Time)
bandwidth = .8

Figure 8: Regression of the Log(time)

The LOWESSplot confirmsour intuitionthatthe EM time grows

at leastinearly compared tthe SKT time. To test that hypothesis
we tried linear regressioan the loglog plot A 95% confidence
interval for theintercept is 2.82, 318], which excludes an
intercept of 0; @5% interval for theslope is [51, .70], which
excludesa slope of 1 This can be interpreted athe time spent
learning parameters using Elon averagat leasie' "' 1 1111l
times greater thathe time spent learning the parameters using
SKT, and the scaling behavior of EM ligely to be worse (the

we can see in the Figure, the slope of the fitted line for the EM ratio gets higher as the data gets larger)

time (green pints) is almost the same as the slope of the fitted
line for the SKT time (red pointsyVe also tried locally weighted
scatter plot smoothing (LOWESS) to compare the runtimes

(Figure8).
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Figure 7: Scatter plot of log(time) with a fitted line

4.4.2 Accuracy and RMSE

Figure9 andFigure 10 show the histogram of prediction accuracy
and RMSE for the 3 modelBy looking at the histograms, we can
say that the results aapproximatelynormally distributed with
aboutthe same varian¢but different means
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Regarding prediction accuracy, baihour methodsignificantly
improved the prediction resul{p=0.017 SKT vs. EMp<<0.001
SEM vs. EM, paired-test, 153 degrees of freedaniegarding
RMSE, the spectrally learned parameters do not result in a
significant improvement compared to BKBut the combination

of SKT with EM leads to a significantly better (lower) RMSE
compared to BKT (p<<0.001, paired -test, 153 dof) Table 2
shows the summary of the resulsgure 11 and Figure 12 show

the boxplot of the prediction accuracy and RMSE respectively.

Table 2: Summary of the results

Method Accuracy RMSE
BKT 0.649(baseline) 0.46 (baseline)
SKT 0.664(p=0.017) 0.464 (p=0.348)
SEM 0.706(p<<0.09) 0.422p<<0.01)
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Figure 11: Boxplot of the accuracy
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Figure 12: Boxplot of the RMSE

S. DISCUSSION

Based on the results of our study, feeind that the spectrally
learned parameters can be used directly inBK& setting and
decreasehe time spent on learning parameters by a factor of
almost 30 while keepingthe same performance in regard to
prediction accuracy and RMSPBn the other handf we use the
spectrally learned parameterto initialize the BKT EM
optimization we can get significantly improved results and still
have the advantage of shorter timeersp on learning the
parameters.

In a setting with a huge number of students latsl of data over
several semesterse.g, an adaptive educational systerthe
spectrally learned parameters are more heipflkeping the time
spent on building the modelf@ach topidractable However, in

a more delicate environmendile a cognitive tutor, in which the
parameters oBKT are the main basis of the system, we can use
the combination methgd®BEM, and buitl a more accurate student
model in order to predict nsgery in different skills.

6. CONCLUSION AND FUTURE WORK

In this paper we presented novel spectral method for learning
the parameters oBKT directly from studentsGequences of
correct/incorrectesponses One direction for future work would
be to compa our method (learn a PSR and extract HMM
parametersjo recent algorithms for directly learning an HMM by
spectral methodq1], and perhaps combine ideas from these
methods with our heuristic.

Another future direction is that, sinapectral algorithms have
recentlybeen used to learn the parameters of different types of
graphical modelq9], the results of our study open a new direction
for future research on learning complex latent variable models
(variations of BKT) directly from student performance data.

From apractical point of view, the results of our studill help

us improve our adaptive educational syst@urrently, JavaGuide
uses a knowledge accumulation approasased on theotal
number of correct answert estimate students® mastery within
each topc for adaptation purposes. The SEM modahbe used

to improve the systerny providing a more accurate regard to
predicting the student answer tthe next question)estimate of
student knowledge
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