15-780: Graduate AI *Lecture 19. Learning*

Geoff Gordon (this lecture) Tuomas Sandholm TAs Sam Ganzfried, Byron Boots States of the st

Review

Stationary distribution

Stationary distribution

States of the st

$$Q(\mathbf{x}_{t+1}) = \int \mathbb{P}(\mathbf{x}_{t+1} \mid \mathbf{x}_t) Q(\mathbf{x}_t) d\mathbf{x}_t$$

MH algorithm

 Proof that MH algorithm's stationary distribution is the desired P(x)

 Based on detailed balance: transitions between x and x' happen equally often in each direction

Gibbs

States and a los was a second of the second

- Special case of MH
- Proposal distribution: conditional probability of block i of x, given rest of x
- Acceptance probability is always 1

Sequential sampling

• Often we want to keep a sample of belief at current time

- This is the sequential sampling problem
- Common algorithm: particle filter
 - Parallel importance sampling for $P(\mathbf{x}_{t+1} | \mathbf{x}_t)$

Particle filter example

State of the state

Learning

• Improve our model, using sampled data

- *Model = factor graph, SAT formula, ...*
- Hypothesis space = { all models we'll consider }
- Conditional models

Version space algorithm

States of the st

- *Predict w/ majority of still-consistent hypotheses*
- Mistake bound analysis

Recall iris example

State and the state of the stat

- $\mathcal{H} = factor graphs of given structure$
- Need to specify entries of ϕs

Factors

State of the state

φ ₀			
setosa	р		
versicolor	q		
virginica	1-p-q		

$\phi_1 - \phi_4$					
	lo	т	hi		
set.	p_i	q_i	$1-p_i-q_i$		
vers.	r _i	Si	$1-r_i-s_i$		
vir.	u_i	Vi	$1-u_i-v_i$		

Continuous factors

Harden and and and the second of the second

φ1					
	lo	m	hi		
set.	<i>p</i> 1	q_1	$1 - p_1 - q_1$	$ \Phi $	
vers.	r ₁	<i>S</i> 1	$1 - r_1 - s_1$		
vir.	U 1	V1	$1 - u_1 - v_1$		

$$\dot{\Phi}_1(\ell, s) = \exp(-(\ell - \ell_s)^2/2\sigma^2)$$

parameters ℓ_{set} , ℓ_{vers} , ℓ_{vir} ; constant σ^2

Discretized petal length

Continuous petal length

Simpler example

The second second was a second with the second with the second was a secon

Η	р
Т	1–р

Coin toss

Parametric model class

- \mathcal{H} is a **parametric** model class: each H in \mathcal{H} corresponds to a vector of parameters $\theta = (p)$ or $\theta = (p, q, p_1, q_1, r_1, s_1, ...)$
- $H_{\theta}: X \sim P(X \mid \theta) (or, Y \sim P(Y \mid X, \theta))$
- Contrast to discrete *H*, as in version space
- Could also have **mixed** *H*: discrete choice among parametric (sub)classes

Prior

State of the state

- Write $D = (X_1, X_2, ..., X_N)$
- H_{θ} gives $P(\boldsymbol{D} \mid \boldsymbol{\theta})$
- Bayesian learning also requires prior
 - \circ distribution over $\mathcal H$
 - for parametric classes, $P(\theta)$
- Together, $P(\mathbf{D} \mid \theta) P(\theta) = P(\mathbf{D}, \theta)$

Prior

• E.g., for coin toss, $p \sim Beta(a, b)$: $P(p \mid a, b) = \frac{1}{B(a, b)} p^{a-1} (1-p)^{b-1}$

• *Specifying*, *e.g.*, *a* = 2, *b* = 2:

$$P(p) = 6p(1-p)$$

Prior for *p*

The state of the s

Coin toss, cont'd

P 8 4 2 2

• Joint dist'n of parameter p and data x_i :

$$P(p, \mathbf{x}) = P(p) \prod_{i} P(x_i \mid p)$$

= $6p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$

Posterior

- $P(\theta \mid D)$ is posterior
- Prior says what we know about θ before seeing D; posterior says what we know after seeing D
- Bayes rule:
 - $P(\theta \mid \mathbf{D}) = P(\mathbf{D} \mid \theta) P(\theta) / P(\mathbf{D})$
- $P(\mathbf{D} | \theta)$ is (data or sample) likelihood

Coin flip posterior

 $P(p \mid \mathbf{x}) = P(p) \prod_{i} P(x_i \mid p) / P(\mathbf{x})$ $= \frac{1}{2} p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$

$$= \frac{1}{Z} p^{1+\sum_{i} x_{i}} (1-p)^{1+\sum_{i} (1-x_{i})}$$

= Beta $(2 + \sum_{i} x_i, 2 + \sum_{i} (1 - x_i))$

Prior for *p*

The second and the second second

Posterior after 4 H, 7 T

The second and the second second

Posterior after 10 H, 19 T

The state of the s

Where does prior come from?

- \circ Sometimes, we know something about θ ahead of time
 - in this case, encode knowledge in prior
 - e.g., $\|\theta\|$ small, or θ sparse
- Often, we want prior to be noninformative (i.e., not commit to anything about θ)
 - in this case, make prior "flat"
 - then $P(\mathbf{D} \mid \theta)$ typically overwhelms $P(\theta)$

Predictive distribution

 Posterior is nice, but doesn't tell us directly what we need to know

- We care more about $P(x_{N+1} | x_1, ..., x_N)$
- *By law of total probability, conditional independence:*

$$P(x_{N+1} \mid \mathbf{D}) = \int P(x_{N+1}, \theta \mid \mathbf{D}) d\theta$$
$$= \int P(x_{N+1} \mid \theta) P(\theta \mid \mathbf{D}) d\theta$$

Coin flip example

States and a service of the service

- After 10 H, 19 T: p ~ Beta(12, 21)
- $\circ E(x_{N+1} \mid p) = p$
- $E(x_{N+1} | \theta) = E(p | \theta) = a/(a+b) = 12/33$
- So, predict 36.4% chance of H on next flip

Approximate Bayes

The second second for the second second

- Coin flip example was easy
- In general, computing posterior (or predictive distribution) may be hard
- Solution: use the approximate integration techniques we've studied!

Bayes as numerical integration

States a fair of fair of the second of the s

- Parameters θ , data D
- $P(\theta \mid \mathbf{D}) = P(\mathbf{D} \mid \theta) P(\theta) / P(\mathbf{D})$
- Usually, $P(\theta)$ is simple; so is $ZP(D \mid \theta)$
- So, $P(\theta \mid D) \propto Z P(D \mid \theta) P(\theta)$
- Perfect for MH

Posterior

Jack and a state of the state o

$$P(a, b \mid x_i, y_i) =$$

$$ZP(a, b) \prod_i \sigma(ax_i + b)^{y_i} \sigma(-ax_i - b)^{1-y_i}$$

$$P(a, b) = N(0, I)$$

Sample from posterior

Salar a state of the second state of the secon

Bayes discussion

Expanded factor graph

Inference vs. learning

 Inference on expanded factor graph = learning on original factor graph

- aside: why the distinction between inference and learning?
- mostly a matter of algorithms: parameters are usually continuous, often high-dimensional

Why Bayes?

- Recall: we wanted to ensure our agent doesn't choose too many mistaken actions
- Each action can be thought of as a bet:
 e.g., eating X = bet X is not poisonous
- We choose bets (actions) based on our inferred probabilities
- *E.g.*, *R* = 1 for eating non-poisonous, –99 for poisonous: eat iff P(poison) < 0.01

Choosing bets

- Don't know which bets we'll need to make
- So, Bayesian reasoning tries to set probabilities that result in reasonable betting decisions no matter what bets we are choosing among
- I.e., works if betting against an **adversary** (with rules defined as follows)

Bayesian bookie

- Bookie (our agent) accepts bets on any event (defined over our joint distribution)
 - A: next I. versicolor has petal length ≥ 4.2
 - B: next three coins in a row come up H
 - $\circ C: A \wedge B$

Odds

- Bookie can't refuse bets, but can set odds:
 A: 1:1 odds (stake of \$1 wins \$1 if A)
 - $\neg B$: 1:7 odds (stake of \$7 wins \$1 if $\neg B$)
- Must accept same bet in either direction
 - no "house cut"
 - *e.g.*, 7:1 odds on $B \Leftrightarrow 1:7$ odds on $\neg B$

Odds vs. probabilities

 Bookie should choose odds based on probabilities

- *E.g.*, *if coin is fair*, P(B) = 1/8
- So, should give 7:1 odds on B (1:7 on ¬B)
 bet on B: (1/8) (7) + (7/8) (-1) = 0
 bet on ¬B: (7/8) (1) + (1/8) (-7) = 0
 In general: odds x:y ⇔ p = y/(x+y)

Conditional bets

- We'll also allow conditional bets: "I bet that, if we go to the restaurant, Ted will order the fries"
- If we go and Ted orders fries, I win
- If we go and Ted doesn't order fries, I lose
- If we don't go, bet is called off

How can adversary fleece us?

 Method 1: by knowing the probabilities better than we do

- *if this is true, we're sunk*
- so, assume no informational advantage for adversary
- Method 2: by taking advantage of bookie's non-Bayesian reasoning

Example of Method 2

States and a service of the service

Suppose I give probabilities:
 P(A)=0.5 P(A ^ B)=0.333 P(B | A)=0.5

 Adversary will bet on A at 1:1, on ¬(A^B) at 1:2, and on B | A at 1:1

Result of bet

Ballin & ten works in

WY YOU WALL AND A MARKED AND A MARKED

A	B	\$ 1	\$ 2	\$ 3	$\$_{ttl}$
T	T	1	-2	1	0
T	F	1	1	-1	1
F	T	-1	1	0	0
F	F	-1	1	0	0

• A at 1:1 $\neg(A^B)$ at 1:2 B|A at 1:1

Dutch book

• Called a "Dutch book"

- Adversary can print money, with no risk
- This is bad for us...
 - we shouldn't have stated incoherent probabilities
 - i.e., probabilities inconsistent with Bayes rule

Theorem

- If we do all of our reasoning according to Bayesian axioms of probability, we will never be subject to a Dutch book
- So, if we don't know what decisions we're going to need to make based on learned hypothesis H, we should use Bayesian learning to compute posterior P(H)

States of the st

Cheaper approximations

Getting cheaper

- Maximum a posteriori (MAP)
- Maximum likelihood (MLE)
- Conditional MLE / MAP

 Instead of true posterior, just use single most probable hypothesis

MAP

States of the st

$\arg\max_{\theta} P(D \mid \theta) P(\theta)$

• Summarize entire posterior density using the maximum

MLE

States and a state of the states of the stat

$\arg\max_{\theta} P(D \mid \theta)$

• Like MAP, but ignore prior term

Conditional MLE, MAP

States a state of the second o

$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta)$$
$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta) P(\theta)$$

• Split $D = (\mathbf{x}, \mathbf{y})$

• Condition on **x**, try to explain only **y**

Iris example: MAP vs. posterior

The second second

Irises: MAP vs. posterior

State of the state

Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- But, often gets better with more data
- Theorem: MAP and MLE are consistent estimates of true θ , if "data per parameter" $\rightarrow \infty$