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Review
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Stationary distribution
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Stationary distribution

Q(xt+1) =
∫

P(xt+1 | xt)Q(xt)dxt
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MH algorithm

Proof that MH algorithm’s stationary 
distribution is the desired P(x)
Based on detailed balance: transitions 
between x and x’ happen equally often in 
each direction

5



Gibbs

Special case of MH
Proposal distribution: conditional 
probability of block i of x, given rest of x
Acceptance probability is always 1
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Sequential sampling

Often we want to keep a sample of belief 
at current time
This is the sequential sampling problem
Common algorithm: particle filter

Parallel importance sampling for      
P(xt+1 | xt)
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Particle filter example
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Learning

Improve our model, using sampled data
Model = factor graph, SAT formula, …
Hypothesis space = { all models we’ll 
consider }
Conditional models
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Version space algorithm

Predict w/ majority of still-consistent 
hypotheses
Mistake bound analysis
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Bayesian 
Learning
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Recall iris example

H = factor graphs of given structure

Need to specify entries of ϕs

ϕ0

ϕ4ϕ3
ϕ2

ϕ1
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Factors

lo m hi

set. pi qi 1–pi–qi

vers. ri si 1–ri–si

vir. ui vi 1–ui–vi

setosa p

versicolor q

virginica 1–p–q

ϕ0 ϕ1–ϕ4
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Continuous factors

lo m hi

set. p1 q1 1–p1–q1

vers. r1 s1 1–r1–s1

vir. u1 v1 1–u1–v1

ϕ1

Discretized petal length Continuous petal length

Φ1(!, s) =
exp(−(!− !s)2/2σ2)

parameters !set, !vers, !vir;
constant σ2
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Simpler example

H p

T 1–p

Coin toss
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Parametric model class

H  is a parametric model class: each H in 
H  corresponds to a vector of parameters 
θ = (p) or θ = (p, q, p1, q1, r1, s1, …)
Hθ: X ~ P(X | θ) (or, Y ~ P(Y | X, θ))
Contrast to discrete H, as in version space

Could also have mixed H: discrete choice 
among parametric (sub)classes
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Prior

Write D = (X1, X2, …, XN)
Hθ gives P(D | θ)
Bayesian learning also requires prior

distribution over H

for parametric classes, P(θ)
Together, P(D | θ) P(θ) = P(D, θ)
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Prior

E.g., for coin toss, p ~ Beta(a, b):

Specifying, e.g., a = 2, b = 2:

P (p | a, b) =
1

B(a, b)
pa−1(1− p)b−1

P (p) = 6p(1− p)

18



Prior for p
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Coin toss, cont’d

Joint dist’n of parameter p and data xi:

P (p,x) = P (p)
∏

i

P (xi | p)

= 6p(1− p)
∏

i

pxi(1− p)1−xi
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Posterior

P(θ | D) is posterior
Prior says what we know about θ before 
seeing D; posterior says what we know 
after seeing D
Bayes rule:

 P(θ | D) = P(D | θ) P(θ) / P(D)
P(D | θ) is (data or sample) likelihood
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Coin flip posterior

P (p | x) = P (p)
∏

i

P (xi | p)/P (x)

=
1
Z

p(1− p)
∏

i

pxi(1− p)1−xi

=
1
Z

p1+
P

i xi(1− p)1+
P

i(1−xi)

= Beta(2 +
∑

i xi, 2 +
∑

i(1− xi))

22



Prior for p
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Posterior after 4 H, 7 T
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Posterior after 10 H, 19 T

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

25



Where does prior come from?

Sometimes, we know something about θ 
ahead of time

in this case, encode knowledge in prior
e.g., ||θ|| small, or θ sparse

Often, we want prior to be noninformative 
(i.e., not commit to anything about θ)

in this case, make prior “flat”
then P(D | θ) typically overwhelms P(θ)
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Predictive distribution

Posterior is nice, but doesn’t tell us 
directly what we need to know
We care more about P(xN+1 | x1, …, xN)
By law of total probability, conditional 
independence:

P (xN+1 | D) =
∫

P (xN+1, θ | D)dθ

=
∫

P (xN+1 | θ)P (θ | D)dθ
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Coin flip example

After 10 H, 19 T: p ~ Beta(12, 21)
E(xN+1 | p) = p
E(xN+1 | θ) = E(p | θ) = a/(a+b) = 12/33
So, predict 36.4% chance of H on next flip
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Approximate 
Bayes
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Approximate Bayes

Coin flip example was easy
In general, computing posterior (or 
predictive distribution) may be hard
Solution: use the approximate integration 
techniques we’ve studied!
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Bayes as numerical integration

Parameters θ, data D
P(θ | D) = P(D | θ) P(θ) / P(D)
Usually, P(θ) is simple; so is Z P(D | θ)
So, P(θ | D) ∝ Z P(D | θ) P(θ)

Perfect for MH
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P (y | x) = σ(ax + b)
σ(z) = 1/(1 + exp(−z))

petal length

P(
I. 

vi
rg

in
ic

a)
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Posterior

P (a, b | xi, yi) =

ZP (a, b)
∏

i

σ(axi + b)yiσ(−axi − b)1−yi

P (a, b) = N(0, I)
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Sample from posterior
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Bayes 
discussion
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Expanded factor graph

original factor graph:
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Inference vs. learning

Inference on expanded factor graph = 
learning on original factor graph

aside: why the distinction between 
inference and learning?
mostly a matter of algorithms: 
parameters are usually continuous, 
often high-dimensional
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Why Bayes?

Recall: we wanted to ensure our agent 
doesn’t choose too many mistaken actions
Each action can be thought of as a bet: 
e.g., eating X = bet X is not poisonous
We choose bets (actions) based on our 
inferred probabilities
E.g., R = 1 for eating non-poisonous, –99 
for poisonous: eat iff P(poison) < 0.01
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Choosing bets

Don’t know which bets we’ll need to make
So, Bayesian reasoning tries to set 
probabilities that result in reasonable 
betting decisions no matter what bets we 
are choosing among
I.e., works if betting against an adversary 
(with rules defined as follows)
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Bayesian bookie

Bookie (our agent) accepts bets on any event 
(defined over our joint distribution)

A: next I. versicolor has petal length ≥ 4.2
B: next three coins in a row come up H
C: A ^ B
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Odds

Bookie can’t refuse bets, but can set odds:
A: 1:1 odds (stake of $1 wins $1 if A)
¬B: 1:7 odds (stake of $7 wins $1 if ¬B)

Must accept same bet in either direction
no “house cut”
e.g., 7:1 odds on B ⇔ 1:7 odds on ¬B
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Odds vs. probabilities

Bookie should choose odds based on 
probabilities
E.g., if coin is fair, P(B) = 1/8
So, should give 7:1 odds on B (1:7 on ¬B)

bet on B: (1/8) (7) + (7/8) (–1) = 0
bet on ¬B: (7/8) (1) + (1/8) (–7) = 0

In general: odds x:y ⇔ p = y/(x+y)
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Conditional bets

We’ll also allow conditional bets: “I bet 
that, if we go to the restaurant, Ted will 
order the fries”
If we go and Ted orders fries, I win
If we go and Ted doesn’t order fries, I lose
If we don’t go, bet is called off

43



How can adversary fleece us?

Method 1: by knowing the probabilities 
better than we do

if this is true, we’re sunk
so, assume no informational advantage 
for adversary

Method 2: by taking advantage of bookie’s 
non-Bayesian reasoning
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Example of Method 2

Suppose I give probabilities:
P(A)=0.5    P(A ^ B)=0.333   P(B | A)=0.5

Adversary will bet on A at 1:1, on ¬(A^B) 
at 1:2, and on B | A at 1:1
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Result of bet

A B $1 $2 $3 $ttl

T T 1 –2 1 0

T F 1 1 –1 1

F T –1 1 0 0

F F –1 1 0 0

A at 1:1    ¬(A^B) at 1:2    B|A at 1:1
46



Dutch book

Called a “Dutch book”
Adversary can print money, with no risk
This is bad for us…

we shouldn’t have stated incoherent 
probabilities
i.e., probabilities inconsistent with 
Bayes rule
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Theorem

If we do all of our reasoning according to 
Bayesian axioms of probability, we will 
never be subject to a Dutch book
So, if we don’t know what decisions we’re 
going to need to make based on learned 
hypothesis H, we should use Bayesian 
learning to compute posterior P(H)
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Cheaper 
approximations
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Getting cheaper

Maximum a posteriori (MAP)
Maximum likelihood (MLE)
Conditional MLE / MAP

Instead of true posterior, just use single 
most probable hypothesis
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MAP

Summarize entire posterior density using 
the maximum

arg max
θ

P (D | θ)P (θ)
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MLE

Like MAP, but ignore prior term

arg max
θ

P (D | θ)
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Conditional MLE, MAP

Split D = (x, y)
Condition on x, try to explain only y

arg max
θ

P (y | x, θ)

arg max
θ

P (y | x, θ)P (θ)
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Iris example: MAP vs. posterior
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Irises: MAP vs. posterior
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Too certain

This behavior of MAP (or MLE) is typical: 
we are too sure of ourselves
But, often gets better with more data
Theorem: MAP and MLE are consistent 
estimates of true θ, if “data per 
parameter” → ∞
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