15-780: Graduate AI Lecture 19. Learning

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Sam Ganzfried, Byron Boots

Review

Stationary distribution

Stationary distribution

$$
Q\left(\mathbf{x}_{t+1}\right)=\int \mathbb{P}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right) Q\left(\mathbf{x}_{t}\right) d \mathbf{x}_{t}
$$

MH algorithm

- Proof that MH algorithm's stationary distribution is the desired $P(\boldsymbol{x})$
- Based on detailed balance: transitions between \boldsymbol{x} and \boldsymbol{x} ' happen equally often in each direction

Gibbs

- Special case of MH
- Proposal distribution: conditional probability of block i of \boldsymbol{x}, given rest of \boldsymbol{x}
- Acceptance probability is always 1

Sequential sampling

- Often we want to keep a sample of belief at current time
- This is the sequential sampling problem
- Common algorithm: particle filter
- Parallel importance sampling for $P\left(\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_{t}\right)$

Particle filter example

Learning

- Improve our model, using sampled data
- Model = factor graph, SAT formula, ...
- Hypothesis space $=\{$ all models we’ll consider \}
- Conditional models

Version space algorithm

- Predict w/ majority of still-consistent hypotheses
- Mistake bound analysis

Bayesian
 Learning

Recall iris example

sepal length I petal length ।

- $\mathscr{K}=$ factor graphs of given structure
- Need to specify entries of ϕ s

Factors

ϕ_{0}	
setosa	p
versicolor	q
virginica	$1-p-q$

	$l o$	m	$h i$
set.	p_{i}	q_{i}	$1-p_{i}-q_{i}$
vers.	r_{i}	s_{i}	$1-r_{i}-s_{i}$
vir.	u_{i}	v_{i}	$1-u_{i}-v_{i}$

Continuous factors

Discretized petal length
Continuous petal length

Simpler example

Coin toss

Parametric model class

- \mathscr{K} is a parametric model class: each H in \mathscr{H} corresponds to a vector of parameters $\theta=(p)$ or $\theta=\left(p, q, p_{1}, q_{1}, r_{1}, s_{1}, \ldots\right)$
- $H_{\theta}: \boldsymbol{X} \sim P(\boldsymbol{X} \mid \theta)(o r, Y \sim P(Y \mid \boldsymbol{X}, \theta))$
- Contrast to discrete \mathscr{H}, as in version space
- Could also have mixed \mathscr{T} : discrete choice among parametric (sub)classes

Prior

- Write $\boldsymbol{D}=\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{N}\right)$
- H_{θ} gives $P(\boldsymbol{D} \mid \theta)$
- Bayesian learning also requires prior
- distribution over \mathscr{H}
- for parametric classes, $P(\theta)$
- Together $P(\boldsymbol{D} \mid \theta) P(\theta)=P(\boldsymbol{D}, \theta)$

Prior

- E.g., for coin toss, $p \sim \operatorname{Beta}(a, b)$:

$$
P(p \mid a, b)=\frac{1}{B(a, b)} p^{a-1}(1-p)^{b-1}
$$

- Specifying, e.g., $a=2, b=2$:

$$
P(p)=6 p(1-p)
$$

Prior for p

\$4.

Coin toss, cont'd

- Joint dist'n of parameter p and data x_{i} :

$$
\begin{aligned}
P(p, \mathbf{x}) & =P(p) \prod_{i} P\left(x_{i} \mid p\right) \\
& =6 p(1-p) \prod_{i} p^{x_{i}}(1-p)^{1-x_{i}}
\end{aligned}
$$

Posterior

- $P(\theta \mid \boldsymbol{D})$ is posterior
- Prior says what we know about θ before seeing D; posterior says what we know after seeing \boldsymbol{D}
- Bayes rule:
- $P(\theta \mid \boldsymbol{D})=P(\boldsymbol{D} \mid \theta) P(\theta) / P(\boldsymbol{D})$
- $P(\boldsymbol{D} \mid \theta)$ is (data or sample) likelihood

Coin flip posterior

$$
\begin{aligned}
P(p \mid \mathbf{x}) & =P(p) \prod_{i} P\left(x_{i} \mid p\right) / P(\mathbf{x}) \\
& =\frac{1}{Z} p(1-p) \prod_{i} p^{x_{i}}(1-p)^{1-x_{i}} \\
& =\frac{1}{Z} p^{1+\sum_{i} x_{i}}(1-p)^{1+\sum_{i}\left(1-x_{i}\right)} \\
& =\operatorname{Beta}\left(2+\sum_{i} x_{i}, 2+\sum_{i}\left(1-x_{i}\right)\right)
\end{aligned}
$$

Prior for p

\$4.

Posterior after 4 H, 7 T

Posterior after $10 \mathrm{H}, 19 \mathrm{~T}$

Where does prior come from?

- Sometimes, we know something about θ ahead of time
- in this case, encode knowledge in prior
- e.g., \| $\theta \|$ small, or θ sparse
- Often, we want prior to be noninformative
(i.e., not commit to anything about θ)
- in this case, make prior "flat"
- then $P(\boldsymbol{D} \mid \theta)$ typically overwhelms $P(\theta)$

Predictive distribution

- Posterior is nice, but doesn't tell us directly what we need to know
- We care more about $P\left(x_{N+1} \mid x_{1}, \ldots, x_{N}\right)$
- By law of total probability, conditional independence:

$$
\begin{aligned}
P\left(x_{N+1} \mid \mathbf{D}\right) & =\int P\left(x_{N+1}, \theta \mid \mathbf{D}\right) d \theta \\
& =\int P\left(x_{N+1} \mid \theta\right) P(\theta \mid \mathbf{D}) d \theta
\end{aligned}
$$

Coin flip example

$$
\begin{aligned}
& \text { - After } 10 H, 19 \text { T: } p \sim \operatorname{Beta}(12,21) \\
& \circ E\left(x_{N+1} \mid p\right)=p \\
& \circ E\left(x_{N+1} \mid \theta\right)=E(p \mid \theta)=a /(a+b)=12 / 33 \\
& \text { - So, predict } 36.4 \% \text { chance of H on next flip }
\end{aligned}
$$

Approximate
Bayes

Approximate Bayes

- Coin flip example was easy
- In general, computing posterior (or predictive distribution) may be hard
- Solution: use the approximate integration techniques we've studied!

Bayes as numerical integration

- Parameters θ, data \boldsymbol{D}
- $P(\theta \mid \boldsymbol{D})=P(\boldsymbol{D} \mid \theta) P(\theta) / P(\boldsymbol{D})$
- Usually, $P(\theta)$ is simple; so is $Z P(\boldsymbol{D} \mid \theta)$
- $\operatorname{So}, P(\theta \mid \boldsymbol{D}) \propto Z P(\boldsymbol{D} \mid \theta) P(\theta)$
- Perfect for MH

Posterior

$$
\begin{aligned}
& P\left(a, b \mid x_{i}, y_{i}\right)= \\
& \quad Z P(a, b) \prod_{i} \sigma\left(a x_{i}+b\right)^{y_{i}} \sigma\left(-a x_{i}-b\right)^{1-y_{i}} \\
& P(a, b)=N(0, I)
\end{aligned}
$$

Sample from posterior

Bayes
 discussion

Expanded factor graph

sepal width
original factor graph:

Inference vs. learning

- Inference on expanded factor graph = learning on original factor graph
- aside: why the distinction between inference and learning?
- mostly a matter of algorithms:
parameters are usually continuous, often high-dimensional

Why Bayes?

- Recall: we wanted to ensure our agent doesn't choose too many mistaken actions
- Each action can be thought of as a bet: e.g., eating $X=$ bet X is not poisonous
- We choose bets (actions) based on our inferred probabilities
- E.g., $R=1$ for eating non-poisonous, -99 for poisonous: eat iff P (poison) <0.01

Choosing bets

- Don't know which bets we'll need to make
- So, Bayesian reasoning tries to set probabilities that result in reasonable betting decisions no matter what bets we are choosing among
- I.e., works if betting against an adversary (with rules defined as follows)

Bayesian bookie

- Bookie (our agent) accepts bets on any event (defined over our joint distribution)
- A: next I. versicolor has petal length ≥ 4.2
- B: next three coins in a row come up H
- $C: A^{\wedge} B$

Odds

- Bookie can't refuse bets, but can set odds:
- A: 1:1 odds (stake of $\$ 1$ wins $\$ 1$ if A)
- $\neg B: 1: 7$ odds (stake of $\$ 7$ wins $\$ 1$ if $\neg B$)
- Must accept same bet in either direction
- no "house cut"
- e.g., 7:1 odds on $B \Leftrightarrow 1: 7$ odds on $\neg B$

Odds vs. probabilities

- Bookie should choose odds based on probabilities
- E.g., if coin is fair, $P(B)=1 / 8$
- So, should give 7:1 odds on B $(1: 7$ on $\neg B)$
- bet on B: $(1 / 8)(7)+(7 / 8)(-1)=0$
- bet on $\neg B:(7 / 8)(1)+(1 / 8)(-7)=0$
- In general: odds $x: y \Leftrightarrow p=y /(x+y)$

Conditional bets

- We'll also allow conditional bets: "I bet that, if we go to the restaurant, Ted will order the fries"
- If we go and Ted orders fries, I win
- If we go and Ted doesn't order fries, I lose
- If we don't go, bet is called off

How can adversary fleece us?

- Method 1: by knowing the probabilities better than we do
- if this is true, we're sunk
- so, assume no informational advantage for adversary
- Method 2: by taking advantage of bookie's non-Bayesian reasoning

Example of Method 2

- Suppose I give probabilities:

$$
P(A)=0.5 \quad P(A \wedge B)=0.333 \quad P(B \mid A)=0.5
$$

- Adversary will bet on A at $1: 1$, on $\neg\left(A^{\wedge} B\right)$ at 1:2, and on $B \mid A$ at $1: 1$

Result of bet

A	B	$\$_{1}$	$\$_{2}$	$\$_{3}$	$\$_{t t l}$
T	T	1	-2	1	0
T	F	1	1	-1	1
F	T	-1	1	0	0
F	F	-1	1	0	0

- A at $1: 1 \quad \neg\left(A^{\wedge} B\right)$ at $1: 2 \quad B \mid A$ at $1: 1$

Dutch book

- Called a "Dutch book"
- Adversary can print money, with no risk
- This is bad for us...
- we shouldn't have stated incoherent probabilities
- i.e., probabilities inconsistent with Bayes rule

Theorem

- If we do all of our reasoning according to Bayesian axioms of probability, we will never be subject to a Dutch book
- So, if we don't know what decisions we're going to need to make based on learned hypothesis H, we should use Bayesian learning to compute posterior $P(H)$

Cheaper

Getting cheaper

- Maximum a posteriori (MAP)
- Maximum likelihood (MLE)
- Conditional MLE / MAP
- Instead of true posterior, just use single most probable hypothesis

MAP

$$
\arg \max _{\theta} P(D \mid \theta) P(\theta)
$$

- Summarize entire posterior density using the maximum

MLE

$$
\arg \max _{\theta} P(D \mid \theta)
$$

- Like MAP, but ignore prior term

Conditional MLE, MAP

$$
\begin{aligned}
& \arg \max _{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta) \\
& \arg \max _{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta) P(\theta)
\end{aligned}
$$

- Split $D=(\boldsymbol{x}, \boldsymbol{y})$
- Condition on \boldsymbol{x}, try to explain only \boldsymbol{y}

Iris example: MAP vs. posterior

Irises: MAP vs. posterior

Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- But, often gets better with more data
- Theorem: MAP and MLE are consistent estimates of true θ, if "data per parameter" $\rightarrow \infty$

