15-780: Graduate AI
Lecture 3. Logic and SAT

Geoff Gordon (this lecture)
Ziv Bar-Joseph
TAs Geoff Hollinger, Henry Lin
HW1 out today!
- On course website
- Due Thu 10/4
- Reminder: Matlab tutorial today
 - NSH 1507, 5PM
Working together

- Working together on HW, looking on web, etc.: great idea!
 - but each person must write up and submit his/her own solution, without reference to written/electronic materials from web or other students

- Last year’s HWs are on course web site
Late policy

- If you need to hand a HW in late: contact us before due date
- Unless agreed otherwise, HW is worth 75% credit up to 24 hrs late, 50% credit up to 48 hrs late, 0% credit afterwards
- Even if for 0% credit, must hand in all assignments to pass
Review
Topics covered

- C-space
- Ways of splitting up C-space
 - Visibility graph
 - Voronoi
 - Exact, approximate cell decomposition
 - Adaptive cells (quadtree, parti-game)
- RRTs
8/15 puzzle applet

Project ideas
Poker
Poker

- Minimax strategy for heads-up poker = solving linear program
- 1-card hands, 13-card deck: 52 vars, instantaneous
- RI Hold’Em: ~1,000,000 vars
 - 2 weeks / 30GB (exact sol, CPLEX)
 - 40 min / 1.5GB (approx sol)
- TX Hold’Em: ??? (up to 10^{17} vars or so)
Can buy a hand-tweaked, very good computer Scrabble player for $30 or so

Can we learn to beat it?
Learning models for control

- Most of this course, we’ll assume we have a good model of the world when we’re trying to plan
- Usually not true in practice—must learn it
- Project: learn a model for an interesting system, write a planner for learned model, make planner work on original system
Learning models for control

- R/C car
Learning models for control

- Model airplane
Citation

“Using Inaccurate Models in Reinforcement Learning.” Pieter Abbeel, Morgan Quigley, Andrew Y. Ng

Logic
Why logic?

- Search: for problems like 8-puzzle, can write compact description of rules
- Reasoning: figure out consequences of the knowledge we’ve given our agent
- Foreshadowing: logical inference is a special case of probabilistic inference (Part II)
Propositional logic

- **Constants**: T or F
- **Variables**: x, y (values T or F)
- **Connectives**: \land, \lor, \neg
 - *Can get by w/ just NAND*
 - *Sometimes also add others:*
 - \oplus, \Rightarrow, \Leftrightarrow, …
Propositional logic

- Build up expressions like $\neg x \Rightarrow y$
- Precedence: \neg, \land, \lor, \Rightarrow
- Terminology: variable or constant with or w/o negation = literal
- Whole thing = formula or sentence
Expressive variable names

- Rather than variable names like \(x, y \), may use names like “rains” or “happy(John)”
- For now, “happy(John)” is just a string with no internal structure
 - there is no “John”
 - \(\text{happy}(\text{John}) \Rightarrow \neg \text{happy}(\text{Jack}) \) means the same as \(x \Rightarrow \neg y \)
But what does it mean?

- A formula defines a mapping
 \[(assignment \text{ to variables}) \mapsto \{T, F\}\]
- Assignment to variables = \textit{model}
- For example, formula $\neg x$ yields mapping:

<table>
<thead>
<tr>
<th>x</th>
<th>$\neg x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
More truth tables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$x \land y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$x \lor y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
(a ⇒ b) is logically equivalent to (¬a ∨ b)

- If a is True, b must be True too
- If a False, no requirement on b
- E.g., “if I go to the movie I will have popcorn”: if no movie, may or may not have popcorn

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a ⇒ b</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Complex formulas

- To evaluate a bigger formula
 - \((x \lor y) \land (x \lor \neg y)\) when \(x = F, y = F\)
- Build a parse tree
- Fill in variables at leaves using model
- Work upwards using truth tables for connectives
Example

\((x \lor y) \land (x \lor \neg y) \) when \(x = F, y = F \)
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$(x \lor y) \Rightarrow z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Working with formulas
Definitions

- Two sentences are *equivalent*, $A \equiv B$, if they have same truth value in every model.
 - $(\text{rains} \Rightarrow \text{pours}) \equiv (\neg \text{rains} \lor \text{pours})$
- reflexive, transitive, commutative
- **Simplifying** = transforming a formula into a shorter*, equivalent formula.
Transformation rules

\[(\alpha \land \beta) \equiv (\beta \land \alpha)\] commutativity of \(\land\)
\[(\alpha \lor \beta) \equiv (\beta \lor \alpha)\] commutativity of \(\lor\)
\[((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))\] associativity of \(\land\)
\[((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))\] associativity of \(\lor\)
\[\neg(\neg\alpha) \equiv \alpha\] double-negation elimination

\[(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))\] distributivity of \(\land\) over \(\lor\)
\[(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))\] distributivity of \(\lor\) over \(\land\)

\(\alpha, \beta, \gamma\) are arbitrary formulas
More rules

\[(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)\] contraposition

\[(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)\] implication elimination

\[(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))\] biconditional elimination

\[\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)\] de Morgan

\[\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)\] de Morgan

\(\alpha, \beta\) are arbitrary formulas
Still more rules…

- …can be derived from truth tables

- For example:
 - \((a \lor \neg a) \equiv True\)
 - \((True \lor a) \equiv True\)
 - \((False \land a) \equiv False\)
Example

\((a \lor (b \land c)) \land \neg (b \lor e)\)

\((a \lor b) \land (a \lor c) \land \neg (a \lor e)\)
Normal
Forms
Normal forms

- A normal form is a standard way of writing a formula.

- E.g., conjunctive normal form (CNF)
 - conjunction of disjunctions of literals
 - \((x \lor y \lor \neg z) \land (x \lor \neg y) \land (z)\)
 - Each disjunct called a clause

- Any formula can be transformed into CNF w/o changing meaning.
CNF cont’d

happy(John) ∧
(¬happy(Bill) ∨ happy(Sue)) ∧
man(Socrates) ∧
(¬man(Socrates) ∨ mortal(Socrates))

- Often used for storage of knowledge database
 - called knowledge base or KB
- Can add new clauses as we find them out
- Each clause in KB is separately true (if KB is)
Another normal form: DNF

- DNF = disjunctive normal form = disjunction of conjunctions of literals
- Doesn’t compose the way CNF does: can’t just add new conjuncts w/o changing meaning of KB
- Example:

\[(rains \lor \neg \text{pours}) \land \text{fishing} \equiv (rains \land \text{fishing}) \lor (\neg \text{pours} \land \text{fishing})\]
Transforming to CNF or DNF

- Naive algorithm:
 - replace all connectives with $\land \lor \neg$
 - move negations inward using De Morgan’s laws and double-negation
 - repeatedly distribute over \land over \lor for DNF (\lor over \land for CNF)
Example

- Put the following formula in CNF

$$(a \lor b \lor \neg c) \land \neg (d \lor (e \land f)) \land (c \lor d \lor e)$$
Example

Now try DNF

\((a \lor b \lor \neg c) \land \neg (d \lor (e \land f)) \land (c \lor d \lor e)\)
Discussion

- Problem with naive algorithm: it’s exponential! (Space, time, size of result.)
- Each use of distributivity can almost double the size of a subformula
A smarter transformation

- Can we avoid exponential blowup in CNF?
- Yes, if we’re willing to introduce new variables
Example

- Put the following formula in CNF:

\[(a \land b) \lor (c \land d)\]
Proofs
Entailment

- **Sentence A entails sentence B, \(A \models B \), if B is True in every model where A is**
 - same as saying that \((A \Rightarrow B) \) is valid
Proof tree

- A tree with a formula at each node
- At each internal node, children \models parent
- Leaves: assumptions or premises
- Root: consequence
- If we believe assumptions, we should also believe consequence
Proof tree example

\[\text{rains} \Rightarrow \text{pours} \]
\[\text{pours \& outside} \Rightarrow \text{rusty} \]
\[\text{rains} \]
\[\text{outside} \]
Proof tree example

\[
\begin{align*}
\text{rains} & \Rightarrow \text{pours} \\
\text{pours} \land \text{outside} & \Rightarrow \text{rusty} \\
\text{rains} & \\
\text{outside} & \\
\end{align*}
\]
Proof tree example

\[
\begin{align*}
\text{rains} & \implies \text{pours} \\
\text{pours} \land \text{outside} & \implies \text{rusty} \\
\text{rains} & \\
\text{outside} & \\
\text{\textbf{\implies \text{pours}}} & \\
\text{\textbf{\implies \text{rusty}}} & \\
\text{\textbf{\implies \text{rusty}}} &
\end{align*}
\]
Proof by contradiction

- Assume opposite of what we want to prove, show it leads to a contradiction
- Suppose we want to show $KB \models S$
- Write KB' for $(KB \land \neg S)$
- Build a proof tree with
 - assumptions drawn from clauses of KB'
 - conclusion = F
- so, $(KB \land \neg S) \models F$ (contradiction)
Proof by contradiction

KB

rains \implies pours

pours \land outside \implies rusty

rains

outside

\neg rusty

\negation of desired conclusion
Proof by contradiction

KB

\[
\begin{align*}
\text{rains} & \Rightarrow \text{pours} \\
\text{pours} \land \text{outside} & \Rightarrow \text{rusty} \\
\text{rains} & \\
\text{outside} & \\
\neg \text{rusty} & \\
\text{negation of desired conclusion}
\end{align*}
\]
Inference rules
Inference rule

- To make a proof tree, we need to be able to figure out new formulas entailed by KB
- Method for finding entailed formulas = inference rule
- We’ve implicitly been using one already
Modus ponens

\[(a \land b \land c \Rightarrow d) \quad a \quad b \quad c \]
\[d \]

- Probably most famous inference rule: all men are mortal, Socrates is a man, therefore Socrates is mortal

- Quantifier-free version:

\[\text{man(Socrates)} \land (\text{man(Socrates)} \Rightarrow \text{mortal(Socrates)}) \]
Another inference rule

$(a \Rightarrow b) \quad \neg b \quad \underline{\text{\neg a}}$

- *Modus tollens*
- *If it’s raining the grass is wet; the grass is not wet, so it’s not raining*
One more…

\[(a \lor b \lor c) \land (\neg c \lor d \lor e) \]

\[a \lor b \lor d \lor e \]

- **Resolution**
- *Combines two sentences that contain a literal and its negation*
- *Not as commonly known as modus ponens / tollens*
Resolution example

- *Modus ponens / tollens are special cases*

- *Modus tollens:*

 \[(\neg \text{raining} \lor \text{grass-wet}) \land \neg \text{grass-wet} \models \neg \text{raining}\]
Resolution

\[
(a \lor b \lor c) \quad (\neg c \lor d \lor e) \\
\hline
a \lor b \lor d \lor e
\]

- Simple proof by case analysis
- Consider separately cases where we assign \(c = True \) and \(c = False \)
Resolution

\[(a \lor b \lor c) \land (\neg c \lor d \lor e)\]

- **Case** \(c = True\)

\[(a \lor b \lor T) \land (F \lor d \lor e)\]

\[= (T) \land (d \lor e)\]

\[= (d \lor e)\]
Resolution

\[(a \lor b \lor c) \land (\neg c \lor d \lor e)\]

- Case \(c = False\)

\[(a \lor b \lor F) \land (T \lor d \lor e)\]

\[= (a \lor b) \land (T)\]

\[= (a \lor b)\]
Resolution

\[(a \lor b \lor c) \land (\neg c \lor d \lor e)\]

- Since \(c\) must be True or False, conclude
\[(d \lor e) \lor (a \lor b)\]

as desired
Theorem

provers
Theorem prover

- Theorem prover = mechanical system for finding a proof tree
- An application of search techniques from earlier lecture
 - Search node = KB (including whatever we’ve proven so far)
 - Neighbor: \((KB \land S)\) if \(KB \models S\)
A basic theorem prover

- Given KB, want to conclude S
- Let $KB' = \text{CNF}(KB \land \neg S)$
- Repeat:
 - add new clause to KB' using resolution
- Until we add empty clause (False) and conclude $KB \models S$
- Or run out of new clauses and conclude $KB \not\models S$
Soundness and completeness

- An inference procedure is **sound** if it can only conclude things entailed by KB.
 - common sense; haven’t discussed anything unsound

- A set of rules is **complete** if it can conclude everything entailed by KB.
Completeness

- **Theorem provers based on modus ponens by itself are **incomplete**
- **Simple resolution theorem prover from above is complete** for propositional logic
Variations

- Horn clause inference (faster)
- Ways of handling uncertainty (slower)
- CSPs (sometimes more convenient)
- Quantifiers / first-order logic

Later
Horn clauses

- *Horn clause:* \((a \land b \land c \implies d)\)
- Equivalently, \((\neg a \lor \neg b \lor \neg c \lor d)\)
- *Disjunction of literals,* at most one of which is positive
- *Positive literal = head, rest = body*
Use of Horn clauses

- People find it easy to write Horn clauses (listing out conditions under which we can conclude head)

\[
\text{happy}(John) \land \text{happy}(Mary) \implies \text{happy}(Sue)
\]

- No negative literals in above formula; again, easier to think about
Why are Horn clauses important

- Inference in a KB of propositional Horn clauses is linear
- E.g., by forward chaining
Forward chaining

- Look for a clause with all body literals satisfied
- Add its head to KB
- Repeat
- See RN for more details
Handling uncertainty

- Fuzzy logic / certainty factors
 - simple, but don’t scale
- Nonmonotonic logic
 - also doesn’t scale
- Probabilities
 - may or may not scale—more in Part II
Certainty factors

- KB assigns a certainty factor in [0, 1] to each proposition
- Interpret as “degree of belief”
- When applying an inference rule, certainty factor for consequent is a function of certainty factors for antecedents (e.g., minimum)
Problems w/ certainty factors

- Hard to separate a large KB into mostly-independent chunks that interact only through a well-defined interface
- Certainty factors are not probabilities (i.e., do not obey Bayes’ Rule)
Nonmonotonic logic

- *Suppose we believe all birds can fly*
- *Might add a set of sentences to KB*

\[
\begin{align*}
\text{bird}(Polly) & \Rightarrow \text{flies}(Polly) \\
\text{bird}(Tweety) & \Rightarrow \text{flies}(Tweety) \\
\text{bird}(Tux) & \Rightarrow \text{flies}(Tux) \\
\text{bird}(John) & \Rightarrow \text{flies}(John) \\
\ldots
\end{align*}
\]
Nonmonotonic logic

- Fails if there are penguins in the KB
- Fix: instead, add

 $\text{bird(}Polly\text{)} \land \neg \text{ab(}Polly\text{)} \implies \text{flies(}Polly\text{)}$

 $\text{bird(}Tux\text{)} \land \neg \text{ab(}Tux\text{)} \implies \text{flies(}Tux\text{)}$

 ...

- $\text{ab(}Tux\text{)}$ is an “abnormality predicate”
- Need separate $\text{ab}_i(x)$ for each type of rule
Nonmonotonic logic

- Now set as few abnormality predicates as possible
- Can prove \text{flies(Polly)} or \text{flies(Tux)} with no \text{ab(x)} assumptions
- If we assert \neg \text{flies(Tux)}, must now assume \text{ab(Tux)} to maintain consistency
- Can’t prove \text{flies(Tux)} any more, but can still prove \text{flies(Polly)}
Nonmonotonic logic

- Works well as long as we don’t have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don’t wear jackets with elbow-patches?
 - even worse with nested abnormalities: birds fly, but penguins don’t, but superhero penguins do, but …
SAT
Definitions

- A sentence is **satisfiable** if it is True in some model.
- If not satisfiable, it is a **contradiction** (False in every model).
- A sentence is **valid** if it is True in every model (a valid sentence is a **tautology**).
SAT is the problem of determining whether a given propositional logic sentence is satisfiable

- **A decision problem**: given an instance, answer yes or no
- **A fundamental problem in CS**
SAT is a search problem

- (At least) two ways to write it
 - search nodes are (full or partial) models, neighbors differ in assignment for a single variable
 - search nodes are formulas, neighbors by entailment
- And hybrids (node = model + formula)
SAT is a general search problem

- Many other search problems reduce to SAT
- Informally, if we can solve SAT, can solve these other problems
- So a good SAT solver is a good AI building block
Example search problem

- 3-coloring: can we color a map using only 3 colors in a way that keeps neighboring regions from being the same color?
Reduction

- Loosely, “A reduces to B” means that if we can solve B then we can solve A
- More formally, A, B are decision problems (instances \rightarrow truth values)
- A reduction is a poly-time function f such that, given an instance a of A
 - $f(a)$ is an instance of B, and
 - $A(a) = B(f(a))$
Reduction picture

Problem A

T
F

All instances

Problem B

T
F

All instances
Reduction picture

Problem A

Problem B

function f

All instances
Reduction picture

Problem A

Problem B

All instances

All instances
Example reduction

- Each square must be red, green, or blue
- Adjacent squares can’t both be red (similarly, green or blue)
Example reduction

1. \((a_r \lor a_g \lor a_b) \land (b_r \lor b_g \lor b_b) \land (c_r \lor c_g \lor c_b) \land (d_r \lor d_g \lor d_b) \land (e_r \lor e_g \lor e_b) \land (z_r \lor z_g \lor z_b)\)

2. \((-a_r \lor -b_r) \land (-a_g \lor -b_g) \land (-a_b \lor -b_b)\)

3. \((-a_r \lor -z_r) \land (-a_g \lor -z_g) \land (-a_b \lor -z_b)\)

4. ...
Search and reduction

- S. A. Cook in 1971 proved that many useful search problems reduce back and forth to SAT
 - showed how to simulate poly-size-memory computer w/ (very complicated, but still poly-size) SAT problem
- Equivalently, SAT is exactly as hard (in theory at least) as these other problems
Cost of reduction

- Complexity theorists often ignore little things like constant factors (or even polynomial factors!)

- So, is it a good idea to reduce your search problem to SAT?

- Answer: sometimes…
Cost of reduction

- **SAT** is well studied \Rightarrow fast solvers
- So, if there is an efficient reduction, ability to use fast SAT solvers can be a win
 - e.g., 3-coloring
 - another example later (SATplan)
- Other times, cost of reduction is too high
 - usu. because instance gets bigger
 - will also see example later (MILP)
Choosing a reduction

- *May be many reductions from problem A to problem B*
- *May have wildly different properties*
 - e.g., *search on transformed instance may take seconds vs. days*
Direction of reduction

- If A reduces to B then
 - if we can solve B, we can solve A
 - so B must be at least as hard as A
- Trivially, can take an easy problem and reduce it to a hard one
Not-so-useful reduction

- Path planning reduces to SAT
 - Variables: is edge e in path?
 - Constraints:
 - exactly 1 path-edge touches start
 - exactly 1 path-edge touches goal
 - either 0 or 2 touch each other node
Reduction to 3SAT

- We saw that search problems can be reduced to SAT
 - is CNF formula satisfiable?

- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?

- Useful if reducing SAT/3SAT to another problem (to show other problem hard)
Reduction to 3SAT

- **Must get rid of long clauses**
- **E.g.,** $(a \lor \neg b \lor c \lor d \lor e \lor \neg f)$
- **Replace with**

 $(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land
 (\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)$