Grad Al 15-780 Fall, 2007
Homework 3

o Homework deadline: 10:30am on November 1

e Please print your code and hand it in with the hard copy of your homework. Also send a
copy of your code by e-mail to both TAs (gholling@andrew.cmu.edu and thlin@cs.cmu. edu,).

1. Conditional Independence in Bayesian Networks (30 pts)

(a) The following Bayesian networks are all part of the alarm network introduced in
class and in Russell and Norvig. Write the factored joint distribution implied by
the following Bayesian networks, in the form of p(X,Y) = p(X)p(Y|X). (2 pts
each)

(b) We use the notation X LY to denote the variable X being independent of Y, and
X 1Y|Z to denote X being independent of Y given Z. Now prove that BLE
in the above Bayesian network of 1(a).i., BLM|A in the Bayesian network of
1(a).ii., and M LJ|A in the Bayesian network of 1(a).iii., based on above joint
distribution factoring. Also indicate whether these are the only independence as-
sumptions embedded in the above Bayesian networks, and list other independence
assumptions if you believe there is any. (3 pts each)

(c) List all the independence assumptions embedded in the original alarm network
(shown below), e.g. BLM|A and BLM|{A, E}. Write a SHORT sentence about
an intuitive reason why you listed or not listed BLE|M. Hint: there are more
than 15 independent assumptions. (10 pts)



(d) A Markov blanket of a variable X, denoted as MB(X), consists of its parents,
children, and children’s co-parents (i.e. children’s parents other than X). After
the exercises above, you should be able to see that a variable is conditionally
independent of all other variables given its Markov blanket. See Russell and
Norvig chapter 14.2 (pp. 499) for more details. Please list the Markov blanket of
each variable in the alarm Bayesian network. (5 pts)

2. Maximum Likelihood Estimation and Hidden Markov Models (30 pts)

(a) The exponential distribution provides a good representation for time intervals
between random events (e.g. bus arrivals). The probability density function
(PDF) of an exponential distribution is,

foap(z; N) = Xe™™ | 2 >0

where )\ is a rate parameter, corresponding to the number of events per unit time
(e.g. buses per hour). Assume you have T' data points z1, xs, - - -, 27, what is the
likelihood of the data given A, L(zy,---,zp|\)? (5 pts)

(b) Based on your data and likelihood above, derive the MLE for A. (8 pts)

(¢) A continuous density hidden Markov model is a HMM whose observations (and
emissions) are continuous. For this problem we would like to learn the parameters

for a HMM with a discrete set of states where each state outputs (emits) values
from using an exponential distribution model.

Following conventional notation, {sq,---, sy} is the set of states. Assume you
have K observation sequence, X = [X™1), X®) ... X&) where X*) = [x(k) x%)]
is the kth sequence For the kth sequence,

o let [q%k), e ,qT ] be the sequence of hidden states.
the initial probability is m; = p(q1 ) VEk.
the transition probability is a;; = p(qt(k) = sj\qﬁk)l = 31) vk, t.

the emission probability is p(l’gk)|q§k) =s;) = femp(xt s \i) VE, t
define o (i) = p(at”, -+ 2 4" = 50, BV (0) = platy, - ol = s0).

Please write down the forward and backward algorithm of this HMM, i.e. how to

calculate o") (1) and g (i) given m;, a;j, Ai- (7 pts)

(d) The forward-backward algorithm you developed is the E-step of the EM algorithm;
the MLE of A\ you developed in problem 2(b) is the basis of the M-step. Now
develop the complete EM algorithm for this HMM. (10 pts)

3. PROGRAMMING PROBLEM: Inference in Bayesian Networks (40 pts)

Please e-mail your code for this section in a zip file to both TAs. To avoid mixup,
please e-mail with the following subject line and archive file name:



Subject: 15-780 Homework 1 Submission
Archive name: (yourID)-hw1.zip
Where (yourID) is your andrew or cs ID.

WARNING: This problem takes considerably more time than the rest of the assign-
ment. Do NOT leave this until the last minute.

(a)

Implement exact inference by enumeration (see below for explanation). (8 pts)

Write a function enumeration_ask that calculates the conditional probability dis-
tribution of one query variable given a set of evidence variables in a Bayesian
network. See the pseudocode in Russell and Norvig chapter 14.4 (pp. 504) for
reference. For simplicity, all variables are binary, so all “distributions” mentioned
in Russell and Norvig, including the returned value of the function, can be repre-
sented by the probability of the variable being true.

Two sample Bayesian network will be given to you in the support archive, named
alarm and pedigree, details below. The following Matlab functions are provided,
to access the Bayesian network data structure:

e create_alarm_bn: creates the alarm Bayesian network.
e create_pedigree_bn: creates the pedigree Bayesian network.

e bn_vars: returns the variables in a Bayesian network, partially ordered from
parents to children.

e bn_parents: returns the parents of a variable.

e bn_cpt: returns the conditional distribution of a variable, given the speci-
fied values of its parents. This corresponds to one row of the conditional
probability table (CPT).

See README and type “help func_name” in Matlab (or read corresponding
scripts) for documentations and examples.

Note that the recursive enumeration must be performed from parents to children,
i.e. the list of variables must be partially ordered such that parents are always
before their children. The function bn_vars will provide the ordered variables
list (actually the variable index itself in the Bayesian networks given below are
already ordered this way, so the ordered list is just 1,2,---  N).

Please write your code by modifying the provided file enumeration_ask.m, which
contains suggested API with documentation. Matlab is STRONGLY recom-
mended, particularly because writing necessary support code in other languages
is time consuming.

Run your exact inference implementation on the following two Bayesian network
inference problems. It should be straightforward for you to convert the question
below into a function call to your code (by using appropriate variable indexes
labeled on the graph below); type “help enumeration_ask” for an example. Both
questions ask the conditional probability of one query variable being true given a
set of evidence variables. Report run time and results.



i.

ii.

p(X5lm X4, 7%,) = 0.001
P(Xglm Xy, X;) =0.29
p(X5l X;, 7X,) =0.94
p(Xsl X, X,) =095

p(X,~x5) = 0.05 P(Xsl~x;) = 0.01
p(X,| X5 =0.9 P(Xs| Xg) =07

The first Bayesian network, created by create_alarm_bn, is the alarm network
in Russell and Norvig. As shown in the graph above, variable are indexed
from 1 to 5 (denoted as X; to Xj5), and CPT are the same as in Russell
and Norvig figure 14.2. Evidence variables are shaded, while query variables
are shaded and circled by a thick line. Calculate the conditional probability
p(X1| X4, ~X5). Hint: verify with some queries that you know the answer
first, e.g. p(X1]|X4, X5) should be about 0.284. (4 pts)

The second Bayesian network, created by create_pedigree_bn, is about genetic
inference. Consider a victim V in a plane crash, whose only family mem-
bers are his half-sister S and the sister’s mother M (not V’s mother). Their
pedigree is shown below. You need to determine whether certain remains
belong to V based on genetic fingerprints of S and M. This can be solved by
a Bayesian network shown below, indexed from 1 to 11. Evidence and query
variables are shaded, while normal circles are hidden variables. You do not
need to worry about the CPT if you are using Matlab; otherwise the CPT is
explained in the documentation of create_pedigree_bn.m.
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The hidden variables (X7, Xy, -+, X3) correspond to unobserved genetic in-
formation in the so-called Mendelian inheritance: humans have two copies
of each chromosome, one from the father and one from the mother. During
reproduction, one copy (chosen randomly) will be passed to the next gener-
ation. Assume you cannot determine which copy is from which parent, but
can only obtain partial information in the observed variables (Xg, X0, X11).
However, you do not have to understand Mendelian inheritance to solve this



()

problem. Now using the structure and CPT provided in the archive, calculate
the conditional probability p(Xi9|=Xg, X11). (4 pts)

Recall the Markov blanket MB(X) described in problem 1(d). For a general
Bayesian network, let parents(X) denotes the parent variables of a variable X,
and children(X) denotes the children variables of X. Write the formula of the
conditional probability of X = x given its Markov blanket, p(z|MB(X)). (4 pts)

Implement approximate inference by MCMC. (10 pts)

Read “Inference by Markov chain simulation” in Russell and Norvig chapter 14.5
carefully, and write a function memc_ask that implements a Gibbs sampler as de-
scribed. Again please write your code by modifying the provided file memec_ask.m,
which contains API with documentation. We provide a function to calculate
p(z|[MB(X)) for you (type help for documentation); you can compare the code
with your answer for problem 3(c).

e bn_cond_mb: calculates the conditional probability of a variable given its
Markov blanket.

Run your MCMC implementation on the two problems above, alarm and pedigree.
Report run time and results.

Note: these two Bayesian networks are small, so run time of MCMC will be longer
than that of exact inference. You can check the scalability of both methods by
comparing their complexities, if interested.

i. Again on alarm Bayesian network, calculate p(X;| Xy, = X5) by running memce_ask

for 5,000 iterations. Hint: verify with some queries that you know the an-
swer first, more than once, but except differences because this is approximate
inference. (5 pts)

ii. Again on pedigree Bayesian network, calculate p(Xi9|=Xo, X11) by running
meme-ask for 50,000 iterations. (5 pts)



