15-780: Graduate AI

Lecture 4. Logic, SAT, and CSPs

Geoff Gordon (this lecture)

Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu
15-780 and 16-731 are the same course, cross listed in CS and Robotics

If your email address is not yourID@cs.cmu.edu, please contact the TAs to make sure you’re on the mailing list
Last episode, on Grad AI
What you should know

- IDA* definition
- Propositional logic
 - syntax, truth tables
 - models, satisfiability, validity, entailment, etc.
- equivalence rules (e.g., De Morgan)
- inference rules (e.g., resolution)
What you should know

- Normal forms (e.g., CNF)
- SAT problem
 - its search graph
 - reductions (e.g., 3-coloring to SAT)
- Structure of a theorem prover
 - proof trees, knowledge bases
- compare/contrast search graph w/ SAT
Direction of reduction

- If A reduces to B then
 - if we can solve B, we can solve A
 - so B must be at least as hard as A
- E.g., could take an easy problem and reduce it to a hard one
Not-so-useful reduction

- *Path planning reduces to SAT*
- *Variables: is edge e in path?*
- *Constraints:*
 - *exactly 1 path-edge touches start*
 - *exactly 1 path-edge touches goal*
 - *either 0 or 2 touch each other node*
Reduction to 3SAT

- We saw that search problems can be reduced to SAT
 - is CNF formula satisfiable?
- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?
- Useful if reducing SAT/3SAT to another problem (to show other problem hard)
Reduction to 3SAT

- Must get rid of long clauses
- E.g., \((a \lor \neg b \lor c \lor d \lor e \lor \neg f)\)
- Replace with
 \[(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land (\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)\]
A note on reductions

- May be many reductions from problem A to problem B
- May have *wildly* different properties
 - e.g., search on transformed instance may take seconds vs. days
- Example will show up when we get to Planning topic
Citation

“Using Inaccurate Models in Reinforcement Learning.” Pieter Abbeel, Morgan Quigley, Andrew Y. Ng

Comparing representations

- All search algorithms presented so far use a discrete representation of the world.
- If world is continuous, they divide it into blocks.
- This works great for some domains, terribly for others.
Real vs. discrete

- *Discrete works well, e.g., for deciding which way to go around an obstacle*
- *But it would be really bad to discretize to the level required for precision position servoing*
Position servoing

- E.g., if state is \((x(t) - x_{tgt}(t))\), discretization will allow bang-bang control (or, slightly better, control with \(k\) fixed levels of effort)

- If state is \((x(t), x_{tgt}(t))\), axis-parallel splits won’t even allow accurate bang-bang control without very fine discretization
Smooth control

- Couldn’t implement a smooth controller like PID without a really fine grid
- Probably so fine as to make it infeasible to search for control recommended by logical formula
Theorem
provers
Soundness and completeness

- An inference procedure is **sound** if it can only conclude things entailed by KB
 - common sense; we already required it
- A set of rules is **complete** if it can conclude everything entailed by KB
- *Modus ponens* by itself is **incomplete**
Completeness of resolution

- Inference procedure: put KB in CNF, add $\neg B$ to KB, apply resolution until
 - we get a False as a consequence (and conclude $KB \models B$), or
 - we run out of inferences (and conclude $KB \not\models B$)

- This inference procedure is complete
Variations

- Horn clause inference (faster)
- Ways of handling uncertainty (slower)
- CSPs (sometimes more convenient)
- Quantifiers / first-order logic (say more about this later)
Horn clauses

- **Horn clause**: \((a \land b \land c \implies d)\)
- Equivalently, \((-a \lor -b \lor -c \lor d)\)
- Disjunction of literals, **at most one of which is positive**
- **Positive literal = head**, **rest = body**
Use of Horn clauses

- People find it easy to write Horn clauses (listing out conditions under which we can conclude head)

 \[\text{happy}(\text{John}) \land \text{happy}(\text{Mary}) \Rightarrow \text{happy}(\text{Sue})\]

- No negative literals in above formula; again, easier to think about
Why are Horn clauses important

- Inference in a KB of propositional Horn clauses is linear
- Forward chaining or backward chaining (see RN reading, or discussion of unit resolution below)
Handling uncertainty

- Fuzzy logic / certainty factors
 - simple, but don’t scale
- Nonmonotonic logic
 - also doesn’t scale
- Probabilities
 - may or may not scale—more in Part II
- Dempster-Shafer theory
Certainty factors

- Instead of just T/F, a model assigns a certainty factor in [0, 1] to each proposition
- And, KB assigns a certainty to each rule
- Interpret as “degree of belief”
Certainty factors

- Logical connectives are interpreted as arithmetic operations, e.g., \land as \min, \lor as \max, and \neg as $(1-x)$

- E.g., if KB has $(\neg \text{rains} \lor \text{pours}) \preceq 0.8$ and $\text{rains} \preceq 0.7$, conclude

 $\max(0.3, \text{pours}) \preceq 0.8$

 $\text{pours} \preceq 0.8$
Problems w/ certainty factors

- Hard to separate a large KB into mostly-independent chunks that interact only through a well-defined interface
- Certainty factors are not probabilities (i.e., do not obey Bayes’ Rule)
Nonmonotonic logic

- Suppose we believe all birds can fly
- Might add a set of sentences to KB

 $\text{bird}(\text{Polly}) \Rightarrow \text{flies}(\text{Polly})$

 $\text{bird}(\text{Tweety}) \Rightarrow \text{flies}(\text{Tweety})$

 $\text{bird}(\text{Tux}) \Rightarrow \text{flies}(\text{Tux})$

 $\text{bird}(\text{John}) \Rightarrow \text{flies}(\text{John})$

 …
Nonmonotonic logic

- Fails if there are penguins in the KB
- Fix: instead, add

\[
bird(Polly) \land \neg ab(Polly) \Rightarrow flies(Polly)\\
bird(Tux) \land \neg ab(Tux) \Rightarrow flies(Tux)
\]

...

- \(ab(Tux) \) is an “abnormality predicate”
- Need separate \(ab_i(x) \) for each type of rule
Nonmonotonic logic

- Now set as few abnormality predicates as possible
- Can prove flies(Polly) or flies(Tux) with no ab(x) assumptions
- If we assert ¬flies(Tux), must now assume ab(Tux) to maintain consistency
- Can’t prove flies(Tux) any more, but can still prove flies(Polly)
Nonmonotonic logic

- Works well as long as we don’t have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don’t wear jackets with elbow-patches?
 - even worse with nested abnormalities: birds fly, but penguins don’t, but superhero penguins do, but …
Dempster-Shafer

- Allows additional worst-case uncertainty beyond probabilities
- Maintains lower, upper bounds on probabilities; assumes world is adversarial within those bounds
- Like probabilities, inference is guaranteed correct
- May be overly conservative
CSPs
Constraint satisfaction

- Recall 3-coloring
- Turned map into graph (same size) then into SAT problem (constant factor blowup)
- Did we have to do that?
CSP definition

- *No*: represent as CSP instead
- \[\text{CSP} = (\text{variables, domains, constraints}) \]
- \(\text{Variable: } a \)
- \(\text{Domain: } (R, G, B) \)
- \(\text{Constraint: } a, b \in (RG, RB, GR, GB, BR, BG) \)
- \(\text{Constraints usually represented compactly} \)
Search

- Obviously a search problem
- Let’s try DFS—top to bottom, RGB
DFS looks stupid

- OK, that wasn’t the right way
- Blindingly obvious: consistency checking
- Don’t assign a variable to a value that conflicts with a neighbor
Search

- DFS with consistency checking
Well, that’s better

- But it still doesn’t notice the problem as soon as it could

- Forward checking: delete conflicting values from neighbors’ domains
 - remember to put them back if we backtrack
 - can do this with reference counts
Search

- Try again with forward checking
Can we do even better?

- Constraint propagation
- E.g., once we notice a variable has just one consistent value, delete that value from its neighbors’ domains
- Even fancier: arc consistency, k-consistency (see RN)
- **Constraint propagation solves it without backtracking!**
Constraint learning

- When we reach a dead end, can spend time analyzing why it is dead
- If there’s a simple reason, distill it into a constraint and add it to CSP
- Saves backtracking later
- But useless constraints slow us down
- See RN Ch 5 for more detail
Big choices: which variable to try next? What value to assign to it?

So far, fixed order—can do better

Most constrained variable first
 natural generalization of propagation
 tends to find inconsistencies quickly
 cheap to do, often a big win
Orderings

- Least-constraining value first
- Give ourselves more flexibility later on
- Delay decisions
- Less important, but sometimes helpful
Example

Other important CSPs

- Minesweeper (courtesy Andrew Moore)
Other important CSPs

- **Sudoku**

 [Website](http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html)
Other important CSPs

- **Job-shop scheduling**
- **A bunch of jobs**
 - each job is a sequence of operations
 - drill, polish, paint
- **A bunch of resources**
 - each operation needs several resources
- **Is there a schedule of length \(\leq k \)?**
SAT Solvers
There are SAT solvers which routinely handle problems with 1,000,000 variables.

Such a SAT solver is a subroutine in one of the planning algorithms we’ll discuss soon.

So, here’s how to write one.
Hard instances

- SAT is NP-complete! How can we handle problems with 1,000,000 variables?!?
- NP-complete doesn’t mean runtime has to be exponential for all examples
 - e.g., \((a \lor b) \land (c \lor d) \land (e \lor f \lor g)\)
- Many practical SAT examples are apparently not all that hard
So where are the hard examples?

- Why are practical examples easy?
- They are over- or under-constrained
 - under-constrained \Rightarrow succeed quickly
 - over-constrained \Rightarrow fail quickly
- Where are the hard examples?
Random 3CNF formulas

- It turns out that *random* formulas can be quite hard to solve
- Randomly select variables to be in each clause, randomize +ve vs. -ve
- If we generate too few clauses, formula is under-constrained
- Too many: over-constrained
Random formulas w/ \(n=50\) vars, \(m\) clauses
Clauses have 3 distinct vars, 50% negated
It turns out $m/n = 4.3$ (and change) is the hard area, for any sufficiently large n.

What’s special about 4.3? I don’t know.

Unfortunately real formulas don’t look like random ones, so it’s not so easy to check hardness.
SAT solvers

- Many different search strategies
- Will mention two: WalkSAT (briefly) and DPLL / Chaff
- Both assume formula input in CNF
- Could do a simplification search before handing to algorithm
- Chaff paper claims this may not help much
WalkSAT

function WALKSAT(clauses, p, max_flips) returns a satisfying model or failure

inputs: clauses, a set of clauses in propositional logic
 p, the probability of choosing to do a “random walk” move, typically around 0.5
 max_flips, number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max_flips do
 if model satisfies clauses then return model
 clause ← a randomly selected clause from clauses that is false in model
 with probability p flip the value in model of a randomly selected symbol from clause
 else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure
Discussion

- **Pros:** easy to implement, very fast on satisfiable formulas
- **Cons:** can’t ever prove unsatisfiable
DPLL

- *WalkSAT* used complete assignments as its search space
- DPLL uses *(partial assignment, formula)*
- DPLL stands for Davis, Putnam, Logemann, and Loveland
- Refers to a family of algorithms; we will discuss the Chaff implementation
DPLL

\[\text{DPLL}(\text{formula}, \text{model}) \]

\[\text{model} = \text{deduce}(\text{formula}, \text{model}) \]
\[\text{if} \ (\text{all-assigned}(\text{formula}, \text{model})) \]
\[\quad \text{return \ evaluate}(\text{formula}, \text{model}) \]
\[x = \text{choose-variable}(\text{formula}, \text{model}) \]
\[\text{if} \ (\text{DPLL}(\text{formula}, \text{model} / x: T)) \]
\[\quad \text{return} \ T \]
\[\text{else} \]
\[\quad \text{return} \ \text{DPLL}(\text{formula}, \text{model} / x: F) \]
Simple subroutines

- **all-assigned**: checks whether all clauses have all variables assigned
- **evaluate**: evaluates a fully-assigned formula
Clause learning

- An optional feature of DPLL-style algorithms is clause learning
- When we backtrack, we can analyze reasons for failure and try to add a clause that will cause us to notice the same type of failure sooner on the next branch
- More below
deduce()

- Does any inference it can do quickly to set more variables without searching
- Has to be fast, so will miss some inferences
- E.g, a Sudoku puzzle requires no search, but most deduce() implementations won’t solve it
deduce()

- Chaff uses only the following rule:
 Unit resolution
 If a clause contains just one unknown variable, set it to satisfy the clause

- In \((a \lor b \lor \neg c)\):
 - with \((a: F, b: F)\), will set \(c: F\)
 - with \((a: F, c: T)\), will set \(b: T\)
Other deduction rules

- *RN recommends*

 Pure literal rule

 If a literal appears with only one sign in all remaining unsatisfied clauses, set it based on that sign

- *(a ∨ b) ∧ (a ∨ ¬b), sets a: T*

- *Chaff paper says this rule is too slow*
Choose-variable

- Can’t use most-constrained variable heuristic from CSP
- This seems like a real pity
- Could imagine allowing clauses like
 - exactly-one-of\((a, b, c, d)\)
 - at-most-k-of\((3, a, b, c, d)\)
- Not sure why this isn’t implemented more often
Choosing a branch variable

- Want to satisfy lots of clauses immediately
- If we can’t do that, want lots of length-1 clauses
- MOMS heuristic
 - find smallest clause (say 3 variables)
 - pick a variable that occurs maximally often in size-3 clauses
MOMS discussion

- Chaff authors say: MOMS doesn’t choose good variables on non-random problems
- Recommend heuristics based on “activity” of a variable
- Each time a literal seems important, increment its score; decay all scores at a constant rate over time
Important literals

- "Important" literals are
 - ones in added clauses
 - ones in conflict clauses
- Chaff increments on conflict, restricts choice to literals in most recently added clause
Clause learning

- Try to add clauses which will let us detect failure sooner on other branches
- These clauses are redundant
- So if they don’t help us prune, they slow us down
- Chaff paper recommends counting how often a clause is involved in a conflict
Clause learning

- Skipped conflict learning in CSPs; this is essentially the same idea
- Learned clauses are derived by resolution from clauses already in formula
- When we fail, there is a conflict clause which has all literals unsatisfied
- Use conflict cause to focus resolution
Clause learning

- Conflict clause has all unsatisfied literals
 - \((a \lor b \lor \neg c)\) in model \((a: F, b: F, c: T)\)

- Some assignments in model came from unit resolution—call these implied vars
 - say \(c\) is most recent, from clause \((b \lor c)\)
 - all other literals in this clause must be in conflict too
Clause learning

- So, resolving these two clauses yields another conflict clause
 - in this case \((a \lor b)\)
- Keep doing resolutions for all implied variables, in reverse chronological order
When should we stop?

- As we back up through assignments, eventually we will hit a decision variable (i.e., one that wasn’t assigned)
- Call it x
- Could skip x, continue with next assigned variable
- But Chaff recommends stopping at x
Why is this a good idea?

- Next backtrack will unset x
- Learned clause will have x as its only unsatisfied literal
- Will immediately set x via a unit resolution
Intuition

- [Subset of previous decisions] \Rightarrow [setting for x]

- Didn’t know how to set x on this branch, so might not know on future branches

- Any time this same subset of decisions appears on a future branch, won’t have to search both values of x
Randomness

- Both WalkSAT and Chaff are random
 - more randomness in WalkSAT
- Result is a significant variance in solution times for same formula (Chaff authors report seconds vs. days)
We can be very lucky or unlucky
Simple idea

- Try different random seeds for breaking ties in variable ordering heuristic
- Let each seed run longer than the last
- Seems to help a lot
Randomization cont’d

- Randomization works well if search times are sometimes short but have heavy tail
Clause learning

- For DPLL-style algorithms, if clause learning was active, random restarts don’t totally lose effort from previous tries
First-order logic
First-order logic

- So far we’ve been using opaque vars like \textit{rains} or \textit{happy(John)}
- Limits us to statements like “it’s raining” or “if John is happy then Mary is happy”
- Can’t say “all men are mortal” or “if John is happy then someone else is happy too”

Bertrand Russell
1872-1970
Predicates and objects

- Interpret happy(John) or likes(Joe, pizza) as a **predicate** applied to some **objects**
- **Object** = an object in the world
- **Predicate** = boolean-valued function of objects
- **predicate(object)** plays same role that variable did before
Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - True, False
 - Equal(x, y)
- We will also write \((x = y)\) and \((x \neq y)\)
- Equality satisfies usual axioms
Functions

- **Functions** map zero or more objects to another object
 - e.g., professor(15-780), last-common-ancestor(John, Mary)

- Predicates and functions have fixed arity
- Zero-argument function is equivalent to an object variable
The nil object

- Functions are untyped: must have a value for any set of arguments
- Typically add a nil object to use as value when other answers don’t make sense
Model

- Models are now much more complicated
 - List of objects
 - Table of function values for each function mentioned in formula
 - includes referent for each variable
 - Table of predicate values for each predicate mentioned in formula
For example
KB describing example

- alive(cat)
- ear-of(cat) = ear
- in(cat, box) \land in(ear, box)
- \neg in(box, cat) \land \neg in(cat, nil) \ldots
- ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- cat \neq box \land cat \neq ear \land cat \neq nil \ldots
Aside: typed variables

- KB illustrates need for data types
- Don’t want to have to specify ear-of(box) or ¬in(cat, nil)
- Could design a type system and allow only formulas which obey type rules (e.g., argument of happy() is of type animate)
Model of example

- **Objects**: C, B, E, N

- **Assignments**:
 - cat: C, box: B, ear: E, nil: N

- **Predicate values**:
 - in(C, B), ¬in(C, C), ¬in(C, N), …
Failed model

- Objects: C, E, N
- Fails because there’s no way to satisfy inequality constraints with only 3 objects
Another possible model

- **Objects**: C, B, E, N, X
- *Extra object X could have arbitrary properties since it’s not mentioned in KB*
- *E.g., X could be its own ear*