15-780: Graduate AI
Computational Game Theory

Michael Benisch
Carnegie Mellon University,
School of Computer Science
Outline

• What is a game?
• Multi-Objective Optimization vs. Game Theory
• Importance of Game Theory in AI
 - Helps agents select strategies
 - Guarantees about artificially designed mechanisms
 - Automated analysis of strategic models
 - Games in the real world
• Solving games with AI
 - Computing Nash equilibria
 - Complexity results on solving games
 - Alternative solution concepts
Outline (cont’d)

• Building games with AI
 - Mechanism design problem and Revelation Principle
 - Game theoretic properties of auctions: 1st price, 2nd price, eBay
 - Implementation in dominant strategies
 - Vickrey-Clarke-Groves Mechanism
 - Automated Mechanism Design
Background
What is a Game?

• A game is a multi-agent model of the relationships between agent’s actions and incentives.
 - When agents are self-interested the game models an optimization process
 - Games can have underlying probabilistic models to describe uncertain outcomes
Questions asked about a game

• How should an agent behave?

• What is the most likely state the game will settle in?

• Can the game be designed to incentivize specific actions?
Multi-Objective Optimization

• Class of optimization models involving simultaneously optimizing multiple objectives:

\[
\text{max}_x \begin{bmatrix}
 f_1(x) \\
 f_2(x) \\
 \vdots \\
 f_n(x)
\end{bmatrix}
\]

Solution: Pareto-optimal curve (set of points where each obj. fn. cannot grow larger without decreasing another).

\[f_1(x)\]

\[f_2(x)\]
Multi-Objective Optimization vs. Game Theory

• Games are similar to multi-objective optimization models, differences are:
 - Each objective function is owned by a different agent.
 - The decision variables are partitioned into those controlled by the owner of each objective function.

\[
x = \{x_1, x_2, \ldots, x_k, \ldots, x_m\}
\]

• Agent 1 owns \(f_1\) and controls variables \(x_1, \ldots, x_k\)
Multi-Objective Optimization vs. Game Theory (cont’d)

Pareto Optimal Curve (solution to multi-objective optimization problem)

Action of Player 1

Action of Player 2

$f_1(x)$

$f_2(x)$

CMU School of Computer Science
AI + Game Theory

• Help agents select strategies

• Help design games that have certain properties

• Help analysts understand a system

Gambit

CMU School of Computer Science
Real World Games

• Games related to warfare
 - Pursuit and evasion: dogfights, missiles, troops
 - Strategic resource deployment: troops, weapons

• Games related to economics
 - Auctions: FCC Spectrum, Google keywords
 - Buying/Selling: resource procurement, stock market, dynamic pricing

• Games related to networks
 - Network formation: social, corporate, P2P
 - Graphical games: dependency of player actions is described by network between players

• Recreational games
 - Perfect information: chess, checkers, go
 - Limited information: poker, football, video games
Solving Games with AI
Review: Notation

• Agent = player: set of all players is $N = \{1, \ldots, n\}$

• Action = move: choice that an agent can make at a point in the game

• Strategy a_i: mapping from distinguishable states of the game to actions

• Strategy set S_i: strategies available to agent i
Review: Notation

• **Strategy profile** $S = \{s_1, \ldots, s_n\}$: one strategy per agent

• **Utility function** $u_i(S)$: mapping from strategy profiles to utilities for player i

• **Opposing profile**, S_{-i}: strategies of agents other than i (in general the notation $-i$ excludes i)
Review: Key Concepts

• Normal Form (Matrix, Simultaneous) Game:
 - Outcome functions are matrices for each player
 - A player’s matrix indicates his utility for playing each possible action against any opponent profile.

• Example NFG: Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>d</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Review: Key Concepts

• **Extensive Form Game:** provides additional tree structure to game, allowing for players to **take turns sequentially** (also called sequential form).

• **Example EFG:** Iterative Rock-Paper-Scissors

```
  P2
 /   \
/     \ /   \
L      W   P2
     /   \
    /     \ P1
   /       \
  RRR      ...
  (0,0)    ...
  (1,-1)   ...
```

```
Conversion Table:

<table>
<thead>
<tr>
<th></th>
<th>RRR</th>
<th></th>
<th>SSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>(0,0)</td>
<td></td>
<td>(1,-1)</td>
</tr>
<tr>
<td>p</td>
<td>(1,-1)</td>
<td></td>
<td>(-1,1)</td>
</tr>
<tr>
<td>s</td>
<td>(-1,1)</td>
<td></td>
<td>(0,0)</td>
</tr>
</tbody>
</table>
```
Review: Key Concepts

- EFG Imperfect information and Chance nodes: players cannot observe all prior moves and some moves are made by “nature”

Information set: player 2 does not know which node he is in.

Chance node: nature takes an action randomly w/ specified probability

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>(1,-1) 50%</td>
<td>(-1,1)</td>
<td>(1,-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>(1,-1)</td>
<td>(1,-1) 50%</td>
<td>(-1,1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(-1, 1)</td>
<td>(1,-1)</td>
<td>(1,-1) 50%</td>
</tr>
</tbody>
</table>
• **Mixed strategy (profile):** a *randomized strategy* that specifies probabilities with which to take each action.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>d</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

[0.75, 0.25]

• **Best response:** the action corresponding to the *highest (expected) utility* given the actions of other players.

- **Proposition:** any player has a pure strategy best response to every opponent (mixed) profile.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>d</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Solving Games

• Solving a game: predicting (or suggesting) agent behavior and the resulting outcome(s) of the game.

• Solution concept: the principle by which agents are assumed to act.

- Default concept is Nash equilibrium: players will settle into a profile when they cannot unilaterally improve.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>d</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Finding Nash Equilibria

• **Existence:** Nash proved *at least one equilibrium* in (potentially) mixed strategies always exists

 - **Proof sketch:** Uses Brouwer’s fixed point theorem which states that every “regular” n-D function has at least one fixed point x such that $f(x) = x$.

• **Zero-sum games:** linear programming solution

• **Pure-strategy equilibrium:** one strategy per player
 - **Perfect Info Extensive-form games:** mini-max search
 - **Normal-form games:** enumeration of all combinations
Algorithms for Finding Nash Equilibria

• **Supports**: a set of strategies with non-zero probability in some mixture

 - **Proposition**: Knowing supports of an NE allows computation of strategies in polynomial time by solving a feasibility problem (which is linear for 2-players).

 - **Constraint equations**: find mixtures p_i over supports in S_i such that all players are indifferent between the strategies in their supports
Algorithms for Finding Nash Equilibria

• Feasibility problem: find \(p \) and \(v \) such that,

\[
\forall i \in N, a_i \in S_i : \quad \sum_{a_{-i} \in S_{-i}} p(a_{-i})u_i(a_i, a_{-i}) = v_i
\]

Agents are indifferent between all strategies in supports

\[
\forall i \in N, a_i \notin S_i : \quad \sum_{a_{-i} \in S_{-i}} p(a_{-i})u_i(a_i, a_{-i}) \leq v_i
\]

Strategies outside of supports are worse

\[
\forall i \in N : \quad \sum_{a_i \in S_i} p_i(a_i) = 1
\]

Mixture is valid (sums to 1) and no strategies out of supports are included

\[
\forall i \in N, a_i \in S_i : \quad p_i(a_i) \geq 0
\]

\[
\forall i \in N, a_i \notin S_i : \quad p_i(a_i) = 0
\]
Algorithms for Finding Nash Equilibria

- **Lemke-Howson Algorithm [1967]**
 - Pivoting based algorithm similar to Simplex; very fast in practice
 - Strategies are pivoted into and out of supports

- **Porter, Nudelman, and Shoam (PNS) [AAAI-04]**
 - Treat support for each player as \(\{0,1\}^{|S|} \) vector
 - *Brute-force support enumeration* algorithm
 - Can be generalized beyond 2-players (with nonlinear program)

- **Gilpin, Conitzer, and Sandholm: MIP Nash [AAAI-05]**
 - Mixed-Integer Programming (MIP) formulation
 - **Main insight:** regret is 0 in equilibrium

All worst-case exponential time in size of game.
Finding Nash Equilibria: Complexity

- General sum normal form reductions (last 2 years)

- 4-player Nash [Papadimitriou et.al.]
- 3-player Nash [Chen and Deng]
- 2-player Nash [Chen and Deng]
- \(\{0-1\} \) n-player Nash [Abbott et.al.]
Finding Nash Equilibria: Complexity

• Theorem: Finding a single NE is PPAD-Complete even in 2-Player games with binary payouts.

 □ PPAD: Subclass of TFNP, which is a collection of NP-Complete decision problems which are known to be true

 □ Other TFNP problems: factoring integers, solvable CSPs
Finding Nash Equilibria: Complexity

• Deciding whether a “good” equilibrium exists is NP-complete from SAT reduction [Conitzer and Sandholm]:
 - equilibrium with high social welfare
 - Pareto-optimal equilibrium
 - equilibrium with high utility for a given player
 - equilibrium with high minimal utility

• Also NP-complete (same reduction):
 - Does more than one equilibrium exists?
 - Is a given strategy ever played in any equilibrium?
 - Is there an equilibrium where a given strategy is never played?
 - Is there an equilibrium with >1 strategies in the players’ supports?
Criticisms of Nash equilibrium

• Not necessarily unique: some games have multiple NEs, which will agents settle into?
 - Social-welfare maximizing?
 - Pareto-optimal?

• Can be hard to compute

• NE is not consistent
 - One player can unilaterally move system from one equilibrium to another