
Path algorithms

Geoff Gordon & Ryan Tibshirani
Optimization 10-725 / 36-725

1



Path algorithms

In this lecture we consider problems of the form

min
x∈Rn

g(x) + λ · h(x)

where λ ≥ 0. In particular, we’ll look at path algorithms, which
deliver {x?(λ) : λ ∈ [0,∞]}, called the solution path

Path algorithms start at one end (either λ = 0 or λ =∞) where
computing the solution is easy, and essentially trace the solution
path by successively satisfying the KKT conditions

Properties:

• They deliver the exact solution (no iteration, no error bound
guarantees) at all values of λ

• They provide useful platform for tuning parameter selection
and statistical analysis

2



1d fused lasso (total variation denoising)

Given y ∈ Rn, consider the 1d fused lasso or 1d total variation
denoising problem:

min
x∈Rn

1

2

n∑
i=1

(yi − xi)2 + λ

n−1∑
i=1

|xi − xi+1|

Example: n = 100, plotted in
red is solution x? at λ = 5

Solution is piecewise constant
with adaptively chosen break
points; larger λ, fewer breaks

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

0 20 40 60 80 100

2
4

6
8

10
12

3



At λ = 0, the solution is simply x?(0) = y

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

4
6

8
10

λ = 0.100

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

4
6

8
10

λ = 0.299

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

4
6

8
10

λ = 0.352

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

4
6

8
10

λ = 0.460

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

4
6

8
10

λ = 0.648

●

●

●

●

●
●

●

●

●

●

2 4 6 8 10

4
6

8
10

λ = 1.102

Strategy: construct a sequence of λ values λ1 ≤ λ2 ≤ . . . at which
adjacent coordinates of x?(λ) are equal or “fused” (Hoefling, 2009)

4



In between these critical values λ1 ≤ λ2 ≤ . . ., solution x?(λ) is
simply linear: if λ ∈ [λk, λk+1],

x?(λ) = α · x?(λk) + (1− α) · x?(λk+1)

where α = (λk+1 − λ)/(λk+1 − λk)

How many critical values are there? Can there be more than n− 1?

We will rely on the following useful fact:

Lemma (Friedman et al., 2007): For any coordinate i of the 1d
fused lasso solution, if x?i (λ) = x?i+1(λ), then x?i (λ

′) = x?i+1(λ
′)

for all λ′ > λ.

I.e., once two coordinates fuse, they can never unfuse. So there are
exactly n− 1 critical points

5



Our problem:

min
x∈Rn

1

2

n∑
i=1

(yi − xi)2 + λ

n−1∑
i=1

|xi − xi+1|

The KKT conditions:

0 = xi − yi + λ(si − si−1), i = 1, . . . n

where si ∈ ∂|xi − xi+1|, i = 1, . . . n− 1 (and s0 = sn = 0)

At λ = 0, x?(0) = y. For a small value λ > 0, consider taking

x?i (λ) = yi − λ
(
sign(yi − yi+1)− sign(yi−1 − yi)

)
, i = 1, . . . n

This satisfies the KKT conditions, and is hence a valid solution at
λ, as long as sign(x?i (λ)− x?i+1(λ)) = sign(yi − yi+1) for all i

6



I.e., x?i (λ) = ai − λ · bi, linear function of λ, for i = 1, . . . n

This is a valid solution as long as x?i (λ) and x?i+1(λ) don’t cross
for some i

0.0 0.1 0.2 0.3 0.4 0.5

4
6

8
10

λ

C
oo

rd
in

at
es

 o
f x

The critical value of λ at which
this happens is

λ1 = min
i=1,...n−1

ai − ai+1

bi − bi+1

Therefore we have computed the solution path x?(λ) exactly for all
λ ∈ [0, λ1]

7



Now invoke our lemma: coordinates 4 and 5 (light blue and green)
will remain fused for all λ ≤ λ1

Hence, we can define the fused groups

g1 = {1}, . . . g3 = {3}, g4 = {4, 5}, g5 = {6}, . . . gn−1 = {n}

and rewrite our problem:

min
xg1 ,...xgn−1

1

2

n−1∑
i=1

∑
j∈gi

(yj − xgi)2 + λ

n−2∑
i=1

|xgi − xgi+1 |

and the KKT conditions:

0 = |gi| · xgi −
∑
j∈gi

yj + λ(sgi − sgi−1), i = 1, . . . n− 1,

where sgi ∈ ∂|xgi − xgi+1 |, i = 1, . . . n− 2

8



We know that these KKT conditions are satisfied at λ1 by x?(λ1)
(simply a reparametrization)

Hence for λ > λ1, we propose

x?gi(λ) = ai − λ · bi, i = 1, . . . n− 1

where

ai =
1

|gi|
∑
j∈gi

yj

bi =
1

|gi|

[
sign

(
x?gi(λ1)− x

?
gi+1

(λ1)
)
− sign

(
x?gi−1

(λ1)− x?gi(λ1)
)]

This will satisfy the KKT conditions, and hence be a valid solution,
so long as sign(x?gi(λ)− x

?
gi+1

(λ)) = sign(x?gi(λ1)− x
?
gi+1

(λ1)) for
all i

9



I.e., this is a valid solution as long as two adjacent coordinate
paths don’t cross

0.0 0.1 0.2 0.3 0.4 0.5

4
6

8
10

λ

C
oo

rd
in

at
es

 o
f x

The next critical value of λ at
which this happens is

λ2 = min
i=1,...n−2

ai − ai+1

bi − bi+1

(minimization here is only over
values ≥ λ1)

Now have computed the path x?(λ) exactly for all λ ∈ [0, λ2]

This strategy can be repeated until all coordinates are fused into
one single group — the end of the path

10



Summary of 1d fused lasso path algorithm:

• Start with λ0 = 0, G = n, gi = {i}, i = 1, . . . n, x?(0) = y

• For k = 1, . . . n− 1:

I Compute ai =
1
|gi|
∑

j∈gi yj and

bi =
1

|gi|

[
sign

(
x?gi(λk−1)− x

?
gi+1

(λk−1)
)
−

sign
(
x?gi−1

(λk−1)− x?gi(λk−1)
)]

I With x?gi(λ) = ai − λ · bi, i = 1, . . . G, increase λ until
the next critical value:

λk = min
i=1,...G−1

ai − ai+1

bi − bi+1

(minimization is only over values ≥ λk−1)

I Merge the appropriate groups, and decrement G

11



0 1 2 3 4 5

4
6

8
10

λ

C
oo

rd
in

at
es

 o
f x

12



Computational complexity

Naive implementation: each iteration takes O(n) operations
(scan over crossing times of all adjacent fused groups), and there
are O(n) iterations (number of fused groups decreases by one at
each iteration), so total complexity is O(n2)

Tree-based implementation:
note that, after a fusion, crossing
times only change for neighbors
of modified group. Therefore we
can store the solution path in a
tree; each leaf tells us a crossing
time for an adjacent group, after 1

a fusion we can update the tree in constant number of operations,
and finding the next (minimum) crossing time requires O(log n)
operations. Hence O(n log n) total operations

1From Hoefling (2009),Apath algorithm for the fused lasso signal approximator
13



Extensions

Computing the exact solution path in O(n log n) operations is very
fast. Are there extensions beyond 1d case?

• For fused lasso over arbitrary graphs — e.g., consider 2d grid
(image denoising) — the key lemma does not hold: as we
increase λ, fused groups can unfuse. Counterintuitive! Now
have to check, at each iteration, for both groups fusing and
unfusing; each iteration can be reduced to solving a max flow
problem, which is unfortunately more costly

• Alternatively, we could have derived a path algorithm for the
dual problem, which is arguably simpler for fused lasso over an
arbitrary graph

• Extensions to the regression loss ‖y −Ax‖2 (before we were
considering A = I) are also possible

14



Path algorithms in statistics and ML

Exact path algorithms can be derived for, e.g., lasso, fused lasso
over an arbitrary graph, trend filtering, locally adaptive regression
splines, SVMs and kernel SVMs, 1-norm SVMs, relaxed maximum
entropy problem

In all these examples, solution path is piecewise linear in λ, so
problem reduces to finding critical values λ1, λ2, . . . λT

Unfortunately, for majority of above examples, tight bounds for
number critical values T are not known

Empirically, number of critical values grows large with increasing
problem sizes, so path algorithms are not scalable to huge problems

Approximate path algorithms can be derived for problems in which
path is not piecewise linear, e.g., lasso GLMs

15



Path algorithms and tuning parameter selection

Recall the general problem form

min
x∈Rn

g(x) + λ · h(x)

where λ ≥ 0. This parameter balances the effective importance of
two terms, controlling the amount of underfitting or overfitting

Path algorithms trace out the solution as a function of tuning
parameter λ — hence they provide a complete description of this
tradeoff, and often aid in statistical understanding of optimization
problem

On a more practical note, the choice of λ is critical for essentially
any statistical application; when computable, path algorithms can
be helpful for this task

16



Example: 1d fused lasso problem over various choices of λ

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

2
4

6
8

10
12

λ = 0.1

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

2
4

6
8

10
12

λ = 0.5

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

2
4

6
8

10
12

λ = 4

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

2
4

6
8

10
12

λ = 25

17



At a high level, here is one such way to do this: start off by
assuming that we observe

yi = µi + εi, i = 1, . . . n

where µ ∈ Rn is unknown signal to be estimated, and εi are i.i.d.
errors with E[εi] = 0 and Var[εi] = σ2

From y, we compute an estimate ŷ; e.g., this can be the solution
x? of an optimization problem. Define the associated prediction
error

PE(ŷ) = E‖ŷ − y′‖2

where y′ is an i.i.d. copy of y

18



Note the expansion

E‖ŷ − y′‖2 = E‖ŷ − y‖2 + 2

n∑
i=1

Cov(ŷi, yi)

where the quantity

df(ŷ) =
1

σ2

n∑
i=1

Cov(ŷi, yi)

is called the degrees of freedom of ŷ. Think of as the effective
number of parameters used by ŷ

Suppose that we knew an unbiased estimate for degrees of freedom
of ŷ, i.e., E[d̂f(ŷ)] = df(ŷ). Then

P̂E(ŷ) = ‖ŷ − y‖2 + 2σ2d̂f(ŷ)

is an unbiased estimate for PE(ŷ), i.e., E[P̂E(ŷ)] = PE(ŷ)

19



Now suppose that our estimate ŷ depends on tuning parameter λ,
written ŷλ. If we could compute d̂f(ŷλ), then we could choose λ
to minimize:

P̂E(ŷλ) = ‖ŷλ − y‖2 + 2σ2d̂f(ŷλ)

our best estimate for prediction error. Note in the case of

• Overfitting: training error ‖ŷλ − y‖2 is small, but degrees of
freedom d̂f(ŷλ) is large

• Underfitting: degrees of freedom d̂f(ŷλ) is small, but training
error ‖ŷλ − y‖2 is large

I.e., choosing λ to minimize P̂E balances performance in training
sample with model complexity

So, how to compute d̂f(ŷλ)? Stein’s formula (Stein, 1981) provides
a way to do this: under some regularity conditions, we can use the
estimate d̂f(ŷλ) =

∑n
i=1 ∂ŷλ,i/∂yi

20



How do path algorithms fit in?

• Because they trace out the exact solution path, it is often
easier to compute d̂f(ŷλ), as λ varies, using a path algorithm.
In many cases, this presents no extra work

• To choose λ, we are faced with nonconvex problem

min
λ≥0
‖ŷλ − y‖2 + 2σ2d̂f(ŷλ)

But in many examples, d̂f(ŷλ) is piecewise constant as with
respect to λ, i.e., constant in between critical values; and
‖ŷλ − y‖2 is monotone in between critical values. Therefore
our problem reduces to

min
λ∈{λ1,...λT }

‖ŷλ − y‖2 + 2σ2d̂f(ŷλ)

so minimizing value of λ can be found by simply checking
each critical value λi visited by path algorithm

21



Example with 1d fused lasso: here d̂f(ŷλ) is simply the number of
fused groups in ŷλ. Choice of tuning parameter: λ = 1.62

0.01 0.05 0.50 5.00 50.00

0
20

0
40

0
60

0
80

0

λ

P
Ê

Training error
Degrees of freedom

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

0 20 40 60 80 100

2
4

6
8

10
12

22



References

• M. Dubiner, M. Gavish, and Y. Singer (2012), The maximum
entropy relaxation path

• B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani (2004),
Least angle regression

• T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu (2004), The
entire regularization path for the support vector machine

• H. Hoefling (2009), A path algorithm for the fused lasso
signal approximator

• M. Park and T. Hastie (2006), `1 regularization path
algorithm for generalized linear models

• S. Rosset and J. Zhu (2007), Piecewise linear regularized
solution paths

• R. J. Tibshirani and J. Taylor (2011), The solution path of
the generalized lasso

• J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani (2003),
1-norm support vector machines

23


