Interior-point methods

10-725 Optimization Geoff Gordon Ryan Tibshirani

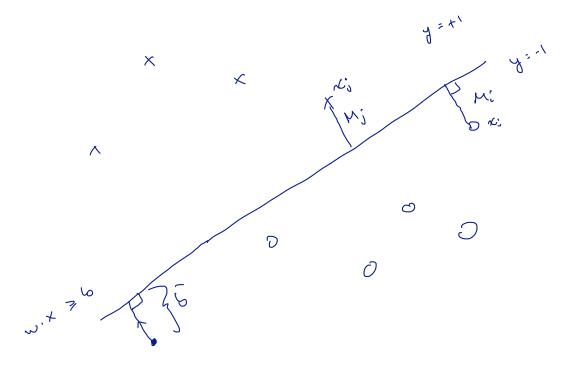
Review

SVM duality

- ▶ min $v^Tv/2 + I^Ts$ s.t. $Av yd + s I \ge 0$ s ≥ 0
- ▶ max $I^T\alpha \alpha^T K\alpha/2$ s.t. $y^T\alpha = 0$ $0 \le \alpha \le I$
- Gram matrix K

Interpretation

- support vectors& complementarity
- reconstruct primal solution from dual



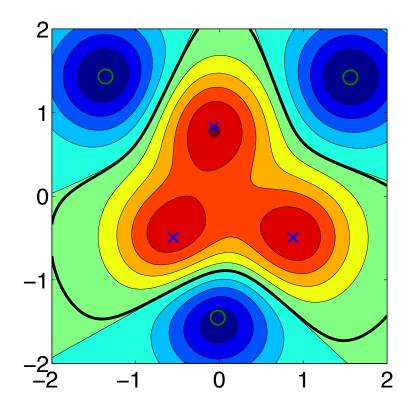
Review

Kernel trick

- high-dim feature spaces, fast
- positive definite function

Examples

- polynomial
- homogeneous polynomial
- ▶ linear
- Gaussian RBF



Review: LF problem $Ax + b \ge 0$

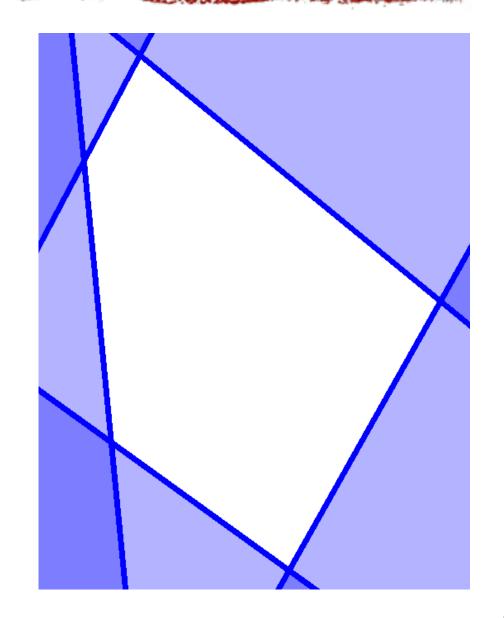
Ball center

- bad summary of LF problem
- Max-volume ellipsoid / ellipsoid center
 - good summary (I/n of volume), but expensive
- Analytic center of LF problem
 - maximize product of distances to constraints
 - \rightarrow min $-\sum ln(a_i^Tx + b_i)$
- Dikin ellipsoid @ analytic center: not quite as good (just I/m < I/n), but much cheaper

Force-field interpretation

of analytic center

- Pretend constraints are repelling a particle
 - normal force for each constraint
 - ▶ force ∞ I/distance
- Analytic center =
 equilibrium = where
 forces balance



Newton for analytic center

- $f(x) = -\sum ln(a_i^Tx + b_i)$
 - \rightarrow df/dx =

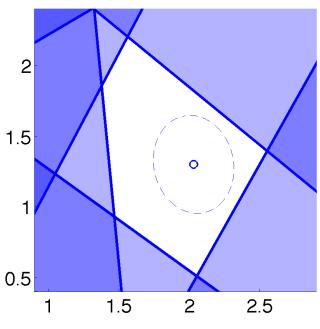
 \rightarrow $d^2f/df^2 =$

Dikin ellipsoid

- $E(x_0) = \{ x \mid (x-x_0)^T H(x-x_0) \le 1 \}$
 - $ightharpoonup H = Hessian of log barrier at <math>x_0$
 - \blacktriangleright unit ball of Hessian norm at x_0

affine constraints can be just feasible

- $vol(E(x_{ac})) \ge vol(X)/m$
 - weaker than ellipsoid center, but still very useful



$$E(x_0) \subseteq X$$

- $E(x_0) = \{ x \mid (x-x_0)^T H(x-x_0) \le 1 \}$
 - \rightarrow H = A^TS⁻²A
 - $ightharpoonup S = diag(S) = diag(Ax_0 + b)$

$mE(x_0) \supseteq X$

- Feasible point x: $Ax + b \ge 0$
- Analytic center x_{ac} : $A^Ty = 0$ $y = I./(Ax_{ac}+b)$
- Let Y = diag(y_{ac}), H = A^TY^2A ; show:
 - ► $(x-x_{ac})^TH(x-x_{ac}) \le m^2$ [+ m]

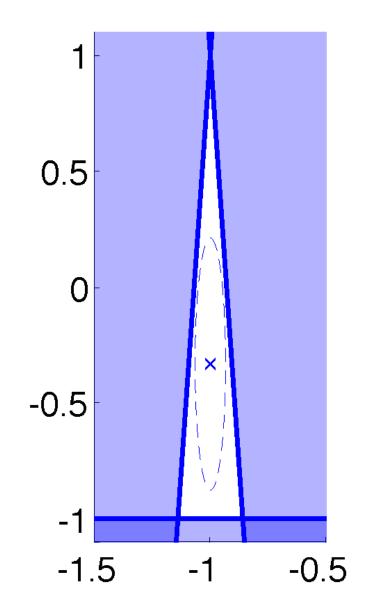
Combinatorics v. analysis

- Two ways to find a feasible point of $Ax+b \ge 0$
 - ▶ find analytic center—minimize a smooth function
 - find a feasible basis—combinatorial search

Bad conditioning? No problem.

- Analytic center & Dikin ellipsoids invariant to affine xforms w = Mx+q
 - ► W = { w | $AM^{-1}(w-q) + b \ge 0$ }

- Can always xform so that a ball takes up ≥ vol(Y)/m
 - ▶ Dikin ellipsoid @ac → sphere



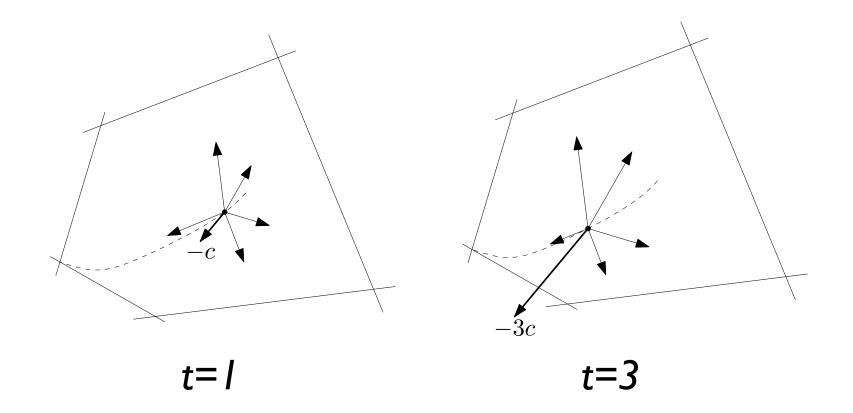
$LF \rightarrow LP$: the central path

- Analytic center was for: find x st $Ax + b \ge 0$
- Now: min c^Tx st $Ax + b \ge 0$
- Same trick:
 - $\blacktriangleright \min f_t(x) = c^T x (1/t) \sum \ln(a_i^T x + b_i)$
 - parameter t > 0
 - central path =
 - $t \to 0$: $t \to \infty$:

Force-field interpretation

of central path

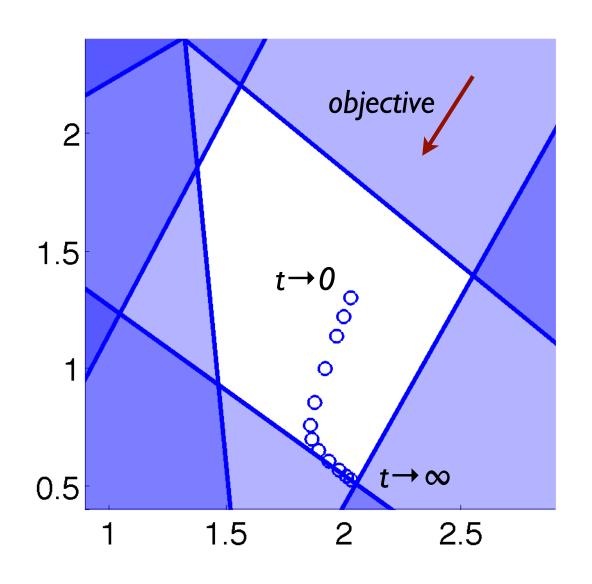
Force along objective; normal forces for each constraint



Newton for central path

- min $f_t(x) = c^T x (1/t) \sum ln(a_i^T x + b_i)$
 - \rightarrow df/dx =
 - \rightarrow d²f/dx² =

Central path example



New LP algorithm?

- Set t=10¹². Find corresponding point on central path by Newton's method.
 - worked for example on previous slide!
 - but has convergence problems in general

• Alternatives?

Constraint form of central path

- $\min -\sum \ln s_i \text{ st } Ax + b \ge 0 \quad c^Tx \le \lambda$
- \exists a I-I mapping $\lambda(t)$ w/ $x(\lambda(t)) = x(t) \forall t > 0$
 - but this form is slightly less convenient since we don't know minimal feasible value of λ or maximal nontrivial value of λ

Dual of central path

- min $c^Tx (1/t) \sum \ln s_i$ st $Ax + b = s \ge 0$

Primal-dual correspondence

- Primal and dual for central path:
 - ▶ min $c^Tx (1/t) \sum ln s_i st Ax + b = s \ge 0$
 - ► max (m ln t)/t + m/t + (1/t) \sum ln $y_i y^Tb$ st $A^Ty = c$ $y \ge 0$
- $L(x,s,y) = c^{T}x (1/t) \sum ln s_{i} + y^{T}(s-Ax-b)$
 - grad wrt s:
 - to get x:

Duality gap

• At optimum:

dual value

▶ primal value
$$c^Tx - (1/t) \sum \ln s_i =$$

dual value $(m \ln t)/t + m/t + (1/t) \sum \ln y_i - y^Tb$

• $s \circ y = te$

Primal-dual constraint form

Primal-dual pair:

- ▶ min c^Tx st $Ax + b \ge 0$
- ▶ $\max -b^T y$ st $A^T y = c$ $y \ge 0$

KKT:

- ► $Ax + b \ge 0$ (primal feasibility)
- ▶ $y \ge 0$ $A^Ty = c$ (dual feasibility)
- $c^Tx + b^Ty \le 0$ (strong duality)
- ▶ ...or, $c^Tx + b^Ty \le \lambda$ (relaxed strong duality)

Analytic center of relaxed KKT

Relaxed KKT conditions:

- ► $Ax + b = s \ge 0$
- y ≥ 0
- \rightarrow A^Ty = c
- ightharpoonup $c^Tx + b^Ty \le \lambda$
- Central path = {analytic centers of relaxed KKT}

Algorithm

- $t := I, y := I^m, x := 0^n$ [s := I^m]
- Repeat
 - Use infeasible-start Newton to find point on dual central path
 - ▶ Recover primal (s,x); gap $c^Tx + b^Ty = m/t$
 - \rightarrow s = I./ty x = A\(s-b) [have already (Newton)]
 - $t := \alpha t (\alpha > 1)$

Example

