Administrivia

HW4 out

- based on feedback survey,
 - fewer questions: 4, but only do 3
 - range of problem types: focus on those that help your understanding
 - split out "spoilers" for Q2

Midterm

- mean 65 (out of 95), std dev 11.3
- back at end of class

Review

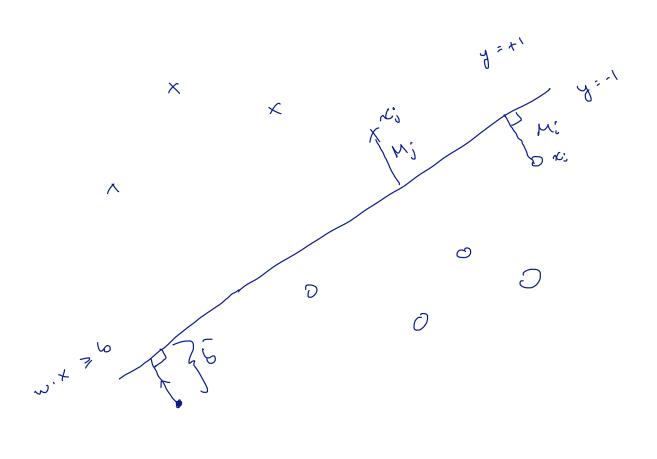
Cone & QP duality

- \blacktriangleright min c^Tx + x^THx/2 s.t. Ax + b \in K x \in L
- ▶ max $-z^THz/2 b^Ty$ s.t. $Hz + c A^Ty \in L^*$ $y \in K^*$

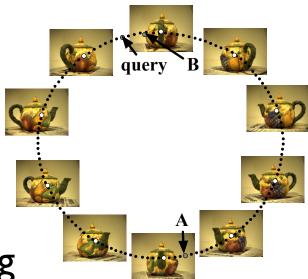
KKT conditions

- ▶ primal: $Ax+b \in K$ $x \in L$
- ▶ dual: $Hz + c A^Ty \in L^*$ $y \in K^*$
- \rightarrow quadratic: Hx = Hz
- ightharpoonup comp. slack: $y^T(Ax+b) = 0$ $x^T(Hz+c-A^Ty) = 0$

Review



Support vector machines



Maximum-variance unfolding

Support vector machines

10-725 Optimization Geoff Gordon Ryan Tibshirani

SVM duality A = (3:x;T

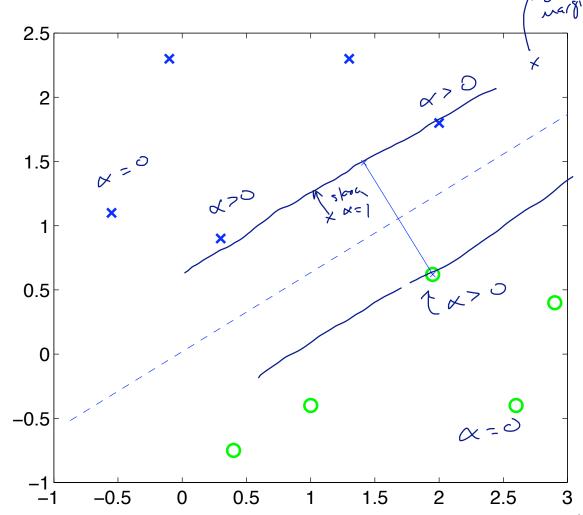
- min $||\mathbf{v}||^2/2 + \Sigma s_i$ s.t. $y_i (\mathbf{x}_i^T \mathbf{v} \mathbf{d}) \ge 1 s_i$ $s_i \ge 0$
- min $v^Tv/2 + I^Ts$ s.t. $Av yd + s I \ge 0$

Interpreting the dual

• $\max I^T \alpha - \alpha^T K \alpha / 2$ s.t. $y^T \alpha = 0$ $0 \le \alpha \le I$

$$y^T\alpha=0$$
: $\{y_i = 0\}$

$$\sum_{\text{tve}} \alpha_i^* = \sum_{\text{ve}} \alpha_i^* = \alpha_{\text{tot}}$$



From dual to primal

• $\max I^T \alpha - \alpha^T K \alpha / 2$ s.t. $y^T \alpha = 0$ $0 \le \alpha \le I$

$$V = A^{T} \propto \frac{V}{\alpha_{eot}}$$

$$= \sum_{i} y_{i} \times i \propto i$$

$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$

$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$

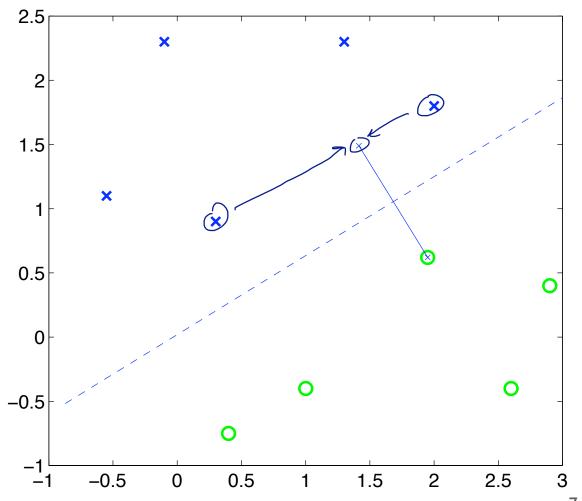
$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$

$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$

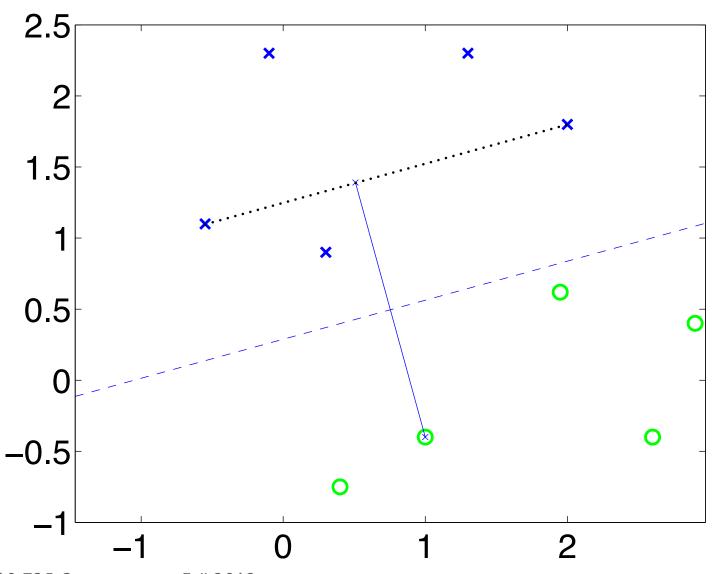
$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$

$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$

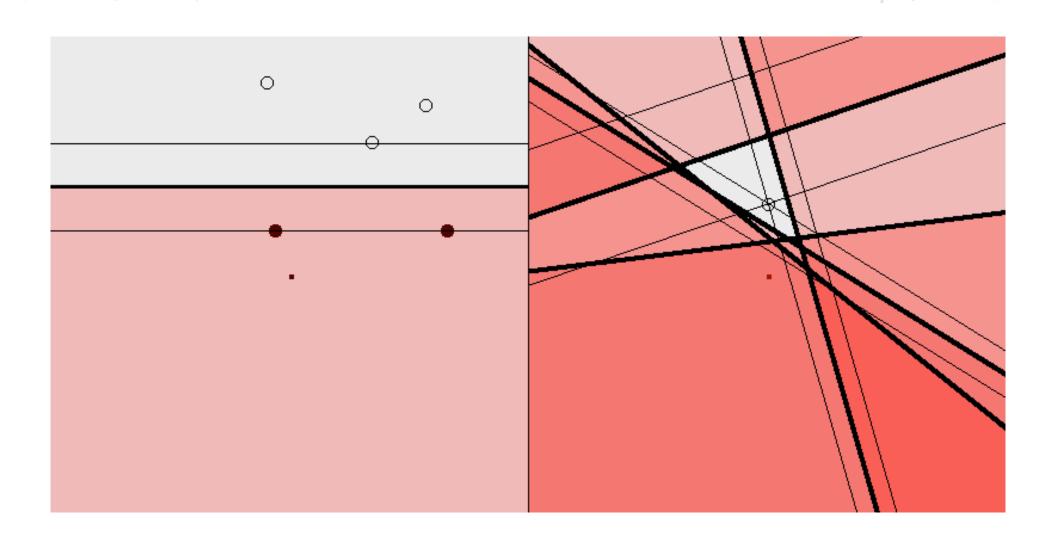
$$= \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}} - \sum_{i} \frac{x_{i} \times i}{\alpha_{eot}}$$



A suboptimal support set



SVM duality: the applet



Why is the dual useful?

 $\max I^{T}\alpha - \alpha^{T}K\alpha/2$ s.t. $y^{T}\alpha = 0$ $0 \le \alpha \le I$

- SVM: n examples, m features: $x_i = \varphi(u_i) \in R^m$
 - ▶ primal: MLI US/S M CONSTIS
 - dual: n vais l'equality 2n lox

The kernel trick

- Don't even need to know features $x_i = \phi(u_i)$, as long as we can compute dot products $x_i^T x_j$
- Matrix of dot products:

$$K_{ij} = \chi_i^T \chi_j^T = \phi(\omega_i)^T \phi(\omega_j^T) = \kappa(\omega_i, \omega_j^T)$$

- only need subroutine for k (don't care about φ)
- how do we know k works?

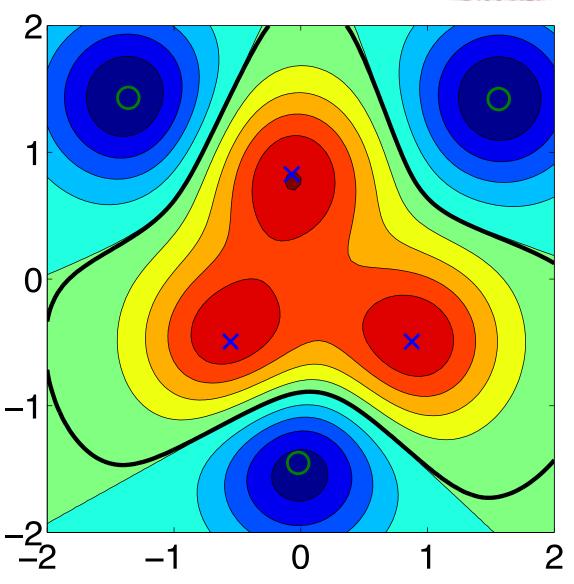
this is a "positive definite function," aka "Mercer kernel"—∃ many examples

Examples of kernels

- $\bullet \quad \mathsf{K}(\mathsf{u}_\mathsf{i},\mathsf{u}_\mathsf{j}) = (\mathsf{I} + \mathsf{u}_\mathsf{i}^\mathsf{T} \mathsf{u}_\mathsf{j})^\mathsf{d}$
 - can represent any degree-d polynomial
 - \blacktriangleright i.e., decision surface is p(u) = b for degree-d poly p
- $\bullet \quad \mathsf{K}(\mathsf{u}_\mathsf{i},\mathsf{u}_\mathsf{j}) = (\mathsf{u}_\mathsf{i}^\mathsf{T}\mathsf{u}_\mathsf{j})^\mathsf{d}$
 - polynomial where all terms have degree exactly d
 - d=I reduces to original (linear) SVM
- $K(u_i, u_j) = \exp(-||u_i u_j||^2/2\sigma^2)$
 - \blacktriangleright Gaussian radial basis functions of width σ

Gaussian kernel

 $\sigma = 0.5$



Interior-point methods

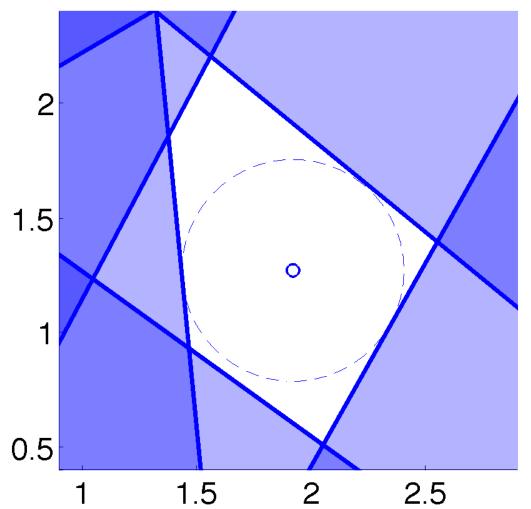
10-725 Optimization Geoff Gordon Ryan Tibshirani

Ball center

aka Chebyshev center

- $\bullet X = \{ x \mid Ax + b \ge 0 \}$
- Ball center:

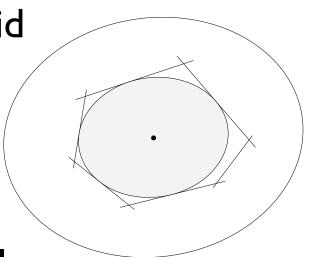
▶ in general:



Ellipsoid center

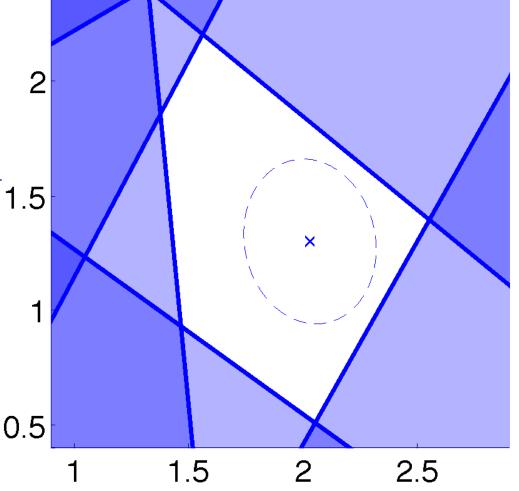
aka max-volume inscribed ellipsoid

- Center d of largest inscribed ellipsoid
 - ► $E = \{ Bu + d \mid ||u||_2 \le I \}$
 - ▶ $vol(E) \ge vol(X)/n$ in R^n
- min log det B⁻¹ s.t.
 - ▶ $a_i^T(Bu+d) + b_i \ge 0$ $\forall i \forall u \text{ with } ||u|| \le I$
 - B ≥ 0
- Convex optimization, but relatively expensive:
 - convex objective, semidefinite constraint
 - ▶ each (u, a_i, b_i) yields a linear constraint on B, d



Analytic center

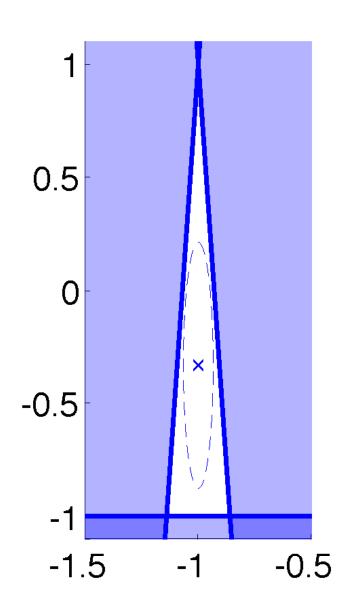
- Let s = Ax + b
- Analytic center:



Bad conditioning? No problem.

$$a_i^T x + b_i \ge 0 \quad \min -\sum \ln(a_i^T x + b_i)$$

$$y = Mx+q$$



Newton for analytic center

- $f(x) = -\sum \ln(a_i^T x + b_i)$
 - $df/dx = -\sum a_i / (a_i^T x + b_i) = \sum_{i=1}^{n} \frac{1}{2^{n_i}} = -A^T \frac{1}{2^n}$

Adding an objective

- Analytic center was for: find x st $Ax + b \ge 0$
- Now: min c^Tx st $Ax + b \ge 0$
- Same trick:
 - $\blacktriangleright \min f_t(x) = c^T x (1/t) \sum \ln(a_i^T x + b_i)$
 - parameter t > 0
 - central path =
 - ▶ $t \to 0$: analytic $t \to \infty$: LP opt