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Administrivia

• HW4 out
‣ based on feedback survey,

‣ fewer questions: 4, but only do 3

‣ range of problem types: focus on those that help 
your understanding

‣ split out “spoilers” for Q2

• Midterm
‣ mean 65 (out of 95), std dev 11.3

‣ back at end of class
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Review

• Cone & QP duality
‣ min cTx + xTHx/2   s.t.   Ax + b ∈ K    x ∈ L

‣ max  –zTHz/2 – bTy   s.t.   Hz + c – ATy ∈ L*   y ∈ K*

• KKT conditions
‣ primal:  Ax+b ∈ K     x ∈ L

‣ dual:  Hz + c – ATy ∈ L*     y ∈ K*

‣ quadratic:   Hx = Hz

‣ comp. slack:  yT(Ax+b) = 0    xT(Hz+c–ATy) = 0
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Review
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SDP is convex. In particular, it can be solved efficiently with

polynomial-time guarantees, and many off-the-shelf solvers

are available in the public domain.

From the solution of the SDP in the matrix K, we can

derive outputs �yi ∈ �n
satisfying Kij = �yi · �yj by singu-

lar value decomposition. An r-dimensional representation

that approximately satisfies Kij ≈ �yi · �yj can be obtained

from the top r eigenvalues and eigenvectors of K. Roughly

speaking, the number of dominant eigenvalues of K indi-

cates the number of dimensions needed to preserve local

distances while maximizing variance. In particular, if the

top r eigenvalues of K account for (say) 95% of its trace,

this indicates that an r-dimensional representation can cap-

ture 95% of the unfolded data’s variance.

Experimental Results
We have used maximum variance unfolding (MVU) to ana-

lyze many high dimensional data sets of interest. Here we

show some solutions (Weinberger & Saul 2004; Blitzer et al.
2005) that are particularly easy to visualize.

Fig. 3 shows a two dimensional representation of teapot

images discovered by MVU. The data set consisted of

n=400 high resolution color images showing a porcelain

teapot viewed from different angles in the plane. The teapot

was viewed under a full 360 degrees of rotation. Each image

contained 76 × 101 RGB pixels, so that the pixel space had

dimensionality d = 23028. The two dimensional represen-

tation discovered by MVU is easily visualized by superim-

posing represenative images on top of their corresponding

outputs in the plane. The outputs are arranged in a circle,

reflecting the cyclic degree of freedom in the data set. Note

also how this representation supports judgments of similar-

ity and difference that are not evident in the original pixel

space, as discussed in Fig. 1.

Fig. 4 shows a three dimensional representation of face
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Figure 3: Two dimensional representation from MVU of

n = 400 images of a teapot, viewed from different angles

in the plane. The circular arrangement reflects the under-

lying rotational degree of freedom. In this representation,

image B is closer to the query image than image A, unlike

in Fig. 1.
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Figure 4: Three dimensional representation from MVU of

n=1960 grayscale images of faces. The superimposed im-

ages reveal a small number of characteristic actions as the

underlying degrees of freedom.

images discovered by MVU. The data set consisted of

n=1960 grayscale images of the same person’s face in dif-

ferent poses and expressions. Each image had 28×20 pixels,

so that the pixel space had dimensionality d = 560. In con-

trast to the results from PCA in Fig. 2, the solution obtained

by MVU reveals a small number of characteristic actions

(e.g., left and right tilt, smile, pucker) as the underlying de-

grees of freedom in the data set.

Fig. 5 shows a two dimensional representation of words

discovered by MVU. The inputs to MVU were derived from

the co-occurrence statistics of the n=2000 most frequently

occuring words in a large corpus of text. Each word was rep-

resented by a sparse d = 60000 dimensional vector of nor-

malized counts, as typically collected for bigram language

modeling. The figure shows that many semantic relation-

ships between words are preserved despite the drastic reduc-

tion in dimensionality from d = 60000 to two dimensions

(for visualization in the plane).

Table 1 compares the estimated dimensionalities of the

data sets in Figs. 3–5 from the results of linear versus non-

linear dimensionality reduction. The estimates from PCA

were computed from the minimum dimensionality subspace

required to contain 95% of the original data’s variance. The

estimates from MVU were computed from the minimum di-

mensionality subspace required to contain 95% of the “un-

folded” data’s variance. For all these data sets, MVU dis-

covers much more compact representations than PCA.

Discussion
In this paper we have described the use of maximum
variance unfolding for nonlinear dimensionality reduction.

Large-scale applications of maximum variance unfolding re-

quire one additional insight. As originally formulated, the

size of the SDP scales linearly with the number of exam-
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SVM duality

• min ||v||2/2 – Σsi   s.t.   yi (xi
Tv – d) ! 1–si   si ! 0

• min  vTv/2 + 1Ts   s.t.   Av – yd + s – 1 ! 0
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Interpreting the dual
• max 1Tα – αTKα/2  s.t.  yTα = 0   0 " α " 1
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From dual to primal
• max 1Tα – αTKα/2  s.t.  yTα = 0   0 " α " 1
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A suboptimal support set
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SVM duality: the applet
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Why is the dual useful?

• SVM: n examples, m features: xi = ϕ(ui) ∈ Rm

‣ primal: 

‣ dual: 
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max 1Tα – αTKα/2  s.t.  yTα = 0   0 " α " 1
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The kernel trick

• Don’t even need to know features xi = ϕ(ui), as 
long as we can compute dot products xi

Txj

• Matrix of dot products:
‣ Kij = 

‣ only need subroutine for k (don’t care about ϕ)

‣ how do we know k works?

‣  

‣ this is a “positive definite function,” aka “Mercer 
kernel”—∃ many examples
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Examples of kernels

• K(ui, uj) = (1 + ui
Tuj)d

‣ can represent any degree-d polynomial

‣ i.e., decision surface is p(u) = b for degree-d poly p

• K(ui, uj) = (ui
Tuj)d

‣ polynomial where all terms have degree exactly d

‣ d=1 reduces to original (linear) SVM

• K(ui, uj) = exp(–||ui–uj||2/2σ2)
‣ Gaussian radial basis functions of width σ
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Gaussian kernel
σ = 0.5
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Ball center
aka Chebyshev center

• X = { x | Ax + b ! 0 }

• Ball center:
‣  

‣ if ||ai|| = 1

‣ in general:
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416 8 Geometric problems

PSfrag replacements

Figure 8.4 The maximum volume ellipsoid (shown shaded) inscribed in a
polyhedron P. The outer ellipse is the boundary of the inner ellipsoid,
expanded by a factor n = 2 about its center. The expanded ellipsoid is
guaranteed to cover P.

the form TE , where E is an ellipsoid that covers C. In other words, the relation
Ẽ = TE gives a one-to-one correspondence between the ellipsoids covering TC and
the ellipsoids covering C. Moreover, the volumes of the corresponding ellipsoids are
all related by the ratio |det T |, so in particular, if E has minimum volume among
ellipsoids covering C, then TE has minimum volume among ellipsoids covering TC.

8.5 Centering

8.5.1 Chebyshev center

Let C ⊆ Rn be bounded and have nonempty interior, and x ∈ C. The depth of a
point x ∈ C is defined as

depth(x,C) = dist(x,Rn \ C),

i.e., the distance to the closest point in the exterior of C. The depth gives the
radius of the largest ball, centered at x, that lies in C. A Chebyshev center of the
set C is defined as any point of maximum depth in C:

xcheb(C) = argmaxdepth(x,C) = argmaxdist(x,Rn \ C).

A Chebyshev center is a point inside C that is farthest from the exterior of C; it is
also the center of the largest ball that lies inside C. Figure 8.5 shows an example,
in which C is a polyhedron, and the norm is Euclidean.

.

Ellipsoid center
aka max-volume inscribed ellipsoid

• Center d of largest inscribed ellipsoid
‣ E = { Bu + d | ||u||2"1 }

‣ vol(E) ! vol(X)/n in Rn

• min log det B-1 s.t. 
‣ ai

T(Bu+d) + bi ! 0    ∀i   ∀u with ||u||"1

‣ B ≽ 0

• Convex optimization, but relatively expensive:
‣ convex objective, semidefinite constraint

‣ each (u, ai, bi) yields a linear constraint on B, d
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Analytic center

• Let s = Ax + b

• Analytic center:
‣  

‣  
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Bad conditioning? No problem.

18

ai
Tx+bi ! 0   min –#ln(ai

Tx+bi)

y = Mx+q
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Newton for analytic center

• f(x) = –# ln(ai
Tx + bi)

‣ df/dx = –# ai / (ai
Tx + bi)

‣ d2f/df2 = 
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Adding an objective

• Analytic center was for:  find x  st  Ax + b ! 0

• Now:  min cTx  st  Ax + b ! 0

• Same trick: 
‣ min ft(x) = cTx – (1/t) # ln(ai

Tx + bi)

‣ parameter t > 0

‣ central path =

‣ t → 0:                t → !:

20


