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Review

• Quadratic programs

• Cone programs
‣ SOCP, SDP

‣ QP ⊆ SOCP ⊆ SDP

‣ SOC, S+ are self-dual

• Poly-time algos (but not strongly poly-time, yet)

• Examples: group lasso, Huber regression, matrix 
completion
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Matrix completion

• Observe Aij for ij ∈ E,  write Oij = {

• min ||(X–A) P||2 + λ||X||
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Max-variance unfolding
aka semidefinite embedding

• Goal: given x1, … xT ∈ Rn

‣ find y1, …, yT ∈ Rk   (k ≪ n)

‣ ||yi – yj|| ! ||xi – xj||  !i,j ∈ E

• If xi were near a k-dim 
subspace of Rn, PCA!

• Instead, two steps:
‣ first look for z1, … zT ∈ Rn with

‣ ||zi – zj|| = ||xi – xj||  !i,j ∈ E

‣ and var(z) as big as possible

‣ then use PCA to get yi from zi
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MVU/SDE

• maxz tr(cov(z)) s.t.  ||zi – zj|| = ||xi – xj||  !i,j ∈ E

5



Geoff Gordon—10-725 Optimization—Fall 2012

Result

• Embed 400 images of a teapot into 2d

6

SDP is convex. In particular, it can be solved efficiently with

polynomial-time guarantees, and many off-the-shelf solvers

are available in the public domain.

From the solution of the SDP in the matrix K, we can

derive outputs �yi ∈ �n
satisfying Kij = �yi · �yj by singu-

lar value decomposition. An r-dimensional representation

that approximately satisfies Kij ≈ �yi · �yj can be obtained

from the top r eigenvalues and eigenvectors of K. Roughly

speaking, the number of dominant eigenvalues of K indi-

cates the number of dimensions needed to preserve local

distances while maximizing variance. In particular, if the

top r eigenvalues of K account for (say) 95% of its trace,

this indicates that an r-dimensional representation can cap-

ture 95% of the unfolded data’s variance.

Experimental Results
We have used maximum variance unfolding (MVU) to ana-

lyze many high dimensional data sets of interest. Here we

show some solutions (Weinberger & Saul 2004; Blitzer et al.
2005) that are particularly easy to visualize.

Fig. 3 shows a two dimensional representation of teapot

images discovered by MVU. The data set consisted of

n=400 high resolution color images showing a porcelain

teapot viewed from different angles in the plane. The teapot

was viewed under a full 360 degrees of rotation. Each image

contained 76 × 101 RGB pixels, so that the pixel space had

dimensionality d = 23028. The two dimensional represen-

tation discovered by MVU is easily visualized by superim-

posing represenative images on top of their corresponding

outputs in the plane. The outputs are arranged in a circle,

reflecting the cyclic degree of freedom in the data set. Note

also how this representation supports judgments of similar-

ity and difference that are not evident in the original pixel

space, as discussed in Fig. 1.

Fig. 4 shows a three dimensional representation of face
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Figure 3: Two dimensional representation from MVU of

n = 400 images of a teapot, viewed from different angles

in the plane. The circular arrangement reflects the under-

lying rotational degree of freedom. In this representation,

image B is closer to the query image than image A, unlike

in Fig. 1.

Right tilt
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Figure 4: Three dimensional representation from MVU of

n=1960 grayscale images of faces. The superimposed im-

ages reveal a small number of characteristic actions as the

underlying degrees of freedom.

images discovered by MVU. The data set consisted of

n=1960 grayscale images of the same person’s face in dif-

ferent poses and expressions. Each image had 28×20 pixels,

so that the pixel space had dimensionality d = 560. In con-

trast to the results from PCA in Fig. 2, the solution obtained

by MVU reveals a small number of characteristic actions

(e.g., left and right tilt, smile, pucker) as the underlying de-

grees of freedom in the data set.

Fig. 5 shows a two dimensional representation of words

discovered by MVU. The inputs to MVU were derived from

the co-occurrence statistics of the n=2000 most frequently

occuring words in a large corpus of text. Each word was rep-

resented by a sparse d = 60000 dimensional vector of nor-

malized counts, as typically collected for bigram language

modeling. The figure shows that many semantic relation-

ships between words are preserved despite the drastic reduc-

tion in dimensionality from d = 60000 to two dimensions

(for visualization in the plane).

Table 1 compares the estimated dimensionalities of the

data sets in Figs. 3–5 from the results of linear versus non-

linear dimensionality reduction. The estimates from PCA

were computed from the minimum dimensionality subspace

required to contain 95% of the original data’s variance. The

estimates from MVU were computed from the minimum di-

mensionality subspace required to contain 95% of the “un-

folded” data’s variance. For all these data sets, MVU dis-

covers much more compact representations than PCA.

Discussion
In this paper we have described the use of maximum
variance unfolding for nonlinear dimensionality reduction.

Large-scale applications of maximum variance unfolding re-

quire one additional insight. As originally formulated, the

size of the SDP scales linearly with the number of exam-

Euclidean 
distance from 
query to A is 
smaller; after 
MVU, distance 
to B is smaller
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Duality for QPs and Cone Ps

• Combined QP/CP:
‣ min cTx + xTHx/2   s.t.   Ax + b ∈ K    x ∈ L

‣ cones K, L implement any/all of equality, inequality, 
generalized inequality

‣ assume K, L proper (closed, convex, solid, pointed)
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Primal-dual pair

• Primal:
‣ min cTx + xTHx/2   s.t.   Ax + b ∈ K    x ∈ L

• Dual:
‣ max  –zTHz/2 – bTy   s.t.   Hz + c – ATy ∈ L*   y ∈ K*
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KKT conditions
‣ min cTx + xTHx/2     s.t.    Ax + b ∈ K               x ∈ L

‣ max –bTy – zTHz/2   s.t.    Hz + c – ATy ∈ L*     y ∈ K*
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KKT conditions

‣ primal:  Ax+b ∈ K     x ∈ L

‣ dual:  Hz + c – ATy ∈ L*     y ∈ K*

‣ quadratic:   Hx = Hz

‣ comp. slack:  yT(Ax+b) = 0    xT(Hz+c–ATy) = 0
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Support vector machines
(separable case)
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Maximizing margin

• margin M = yi (xi . w - b)

• max M  s.t.  M ! yi (xi . w - b)
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For example
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Slacks

• min ||v||2/2           s.t.  yi (xi
Tv – d) " 1           ∀i
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