QP & cone program duality Support vector machines

10-725 Optimization Geoff Gordon Ryan Tibshirani

Review

- Quadratic programs
- Cone programs
 - ▶ SOCP, SDP
 - ▶ $QP \subseteq SOCP \subseteq SDP$
 - ▶ SOC, S+ are self-dual

- Poly-time algos (but not strongly poly-time, yet)
- Examples: group lasso, Huber regression, matrix completion

Matrix completion

• Observe A_{ij} for $ij \in E$, write $\mathcal{O}_{ij} = \{\frac{1}{2}\}$ • $\min_{X} ||(X-A) \circ ||_{F}^{2} + \lambda ||X||_{*}$ $\int_{S,t}^{M} \left[\left(X - X - X \right) \right] > 0$ x (+r(P) + tr(Q))/2 X=UTUT +(e) + + (a) > 2 + (u xv) = 2 ||x|| x $P = UZU^{T} Q = VZU^{T}$ $fr(e) = fr(uSUZ) fr(e) + fr(Q) = 2||x||_{*}$ $fr(e) = fr(uSUZ) fr(e) + fr(Q) = 2||x||_{*}$ $fr(e) = fr(uSUZ) fr(e) + fr(Q) = 2||x||_{*}$

Max-variance unfolding

aka semidefinite embedding

- Goal: given $x_1, \ldots x_T \in R^n$
 - find $y_1, ..., y_T \in \mathbb{R}^k$ $(k \ll n)$
 - $||y_i y_j|| \approx ||x_i x_j|| \quad \forall i, j \in E$
- If x_i were near a k-dim subspace of Rⁿ, PCA!
- Instead, two steps:
 - first look for $z_1, \ldots z_T \in \mathbb{R}^n$ with
 - $||z_i z_j|| = ||x_i x_j|| \quad \forall i, j \in E$
 - and var(z) as big as possible
 - ▶ then use PCA to get y_i from z_i

MVU/SDE

• $\max_{z} tr(cov(z)) s.t. ||z_i - z_j|| = ||x_i - x_j|| \forall i,j \in E$

$$X = \begin{pmatrix} x_{1} & x_{2} & \dots & x_{T} \end{pmatrix} \quad Z = \begin{pmatrix} z_{1} & \dots & z_{T} \end{pmatrix} \quad P = X^{T}X \quad Q = Z^{T}Z \quad Q \geq 0$$

$$|z_{1} - z_{2}||^{2} = z_{1}^{T}z_{1}^{2} - 2z_{1}^{T}z_{1}^{2} + z_{2}^{T}Z_{2}^{2} + z_{1}^{T}Z_{2}^{2} + z_{2}^{T}Z_{2}^{2} + z_{2}^{T}Z_$$

Result

Embed 400 images of a teapot into 2d

Euclidean
distance from
query to A is
smaller; after
MVU, distance
to B is smaller

Duality for QPs and Cone Ps

Combined QP/CP:

- yek* SEL*

 yr(Ax-16)>0 xrs>0
- $ightharpoonup min c^Tx + x^THx/2$ s.t. $Ax + b \in K$ $x \in L$
- cones K, L implement any/all of equality, inequality, generalized inequality
- assume K, L proper (closed, convex, solid, pointed)

Primal-dual pair

- Primal:
 - \rightarrow min c^Tx + x^THx/2 s.t. Ax + b \in K x \in L
- Dual:
 - \blacktriangleright max $-z^THz/2 b^Ty$ s.t. $Hz + c A^Ty \in L^*$ $y \in K^*$

KKT conditions

▶ min $c^Tx + x^THx/2$ s.t. $Ax + b \in K$ +xTHZ +xTATy - xTATy cTx + xTH+/2 + bTy + 2 TH2/2 = 0 (x-2) TH(x-2)/2 + (Ax+5) Ty + x T (C+1+2-ATy) = 0

$$(Ax+b)^{T}y = 0$$

$$x^{T}(c+Hz-A^{T}y) = 0$$

$$Hx = Hz$$

 $x \in L$

KKT cond's

KKT conditions

- ▶ primal: $Ax+b \in K$ $x \in L$ ▶ dual: $Hz + c A^Ty \in L^*$ $y \in K^*$
- → quadratic: Hx = Hz → Ø
- comp. slack: $y^T(Ax+b) = 0$ $x^T(Hz+c-A^Ty) = 0$

Support vector machines

(separable case)

$$x_{i} \in \mathbb{R}^{2}$$
 $y_{i} \in \{-1, 1\}$

$$\vec{\omega} = \frac{\omega}{1|\omega|} \quad \vec{b} = \frac{\omega}{1|\omega|}$$

$$M_{i} = \vec{b} - \vec{\omega} \cdot \vec{x}_{i} = y_{i}(\vec{\omega} \cdot \vec{x}_{i} - \vec{b})$$

$$M_{i} = \vec{b} - \vec{\omega} \cdot \vec{x}_{i} = y_{i}(\vec{\omega} \cdot \vec{x}_{i} - \vec{b})$$

$$M_{i} = \vec{b} - \vec{\omega} \cdot \vec{x}_{i} = y_{i}(\vec{\omega} \cdot \vec{x}_{i} - \vec{b})$$

Maximizing margin

- margin $M = y_i (x_i \cdot \overline{w} \overline{b})$
- max M s.t. $M \le y_i (x_i \cdot \overline{w} \overline{b})$

$$V = \overline{U}_{M}$$

$$\overline{U} = M$$

$$\overline{U} = M$$

$$W = M$$

For example

Slacks

• min $||v||^2/2$ + $C_{\frac{7}{2}}$ s.t. $y_i(x_i^T v - d) \ge 1 - 5c$ ∀i

5; ≥0

Geoff Gordon—10-725 Optimization—Fall 2012

14