Linear programs

10-725 Optimization Geoff Gordon Ryan Tibshirani

Review: LPs

- LPs: m constraints, n vars
 - $ightharpoonup A: R^{m \times n}$ b: R^m c: R^n x: R^n
 - ineq form
 - ▶ [min or max] c^Tx s.t. $Ax \le b$
 - m ≥ n
 - > std form
 - [min or max] c^Tx s.t. Ax = b $x \ge 0$
 - m ≤ n

```
max 2x+3y s.t.

x + y \le 4

2x + 5y \le 12

x + 2y \le 5

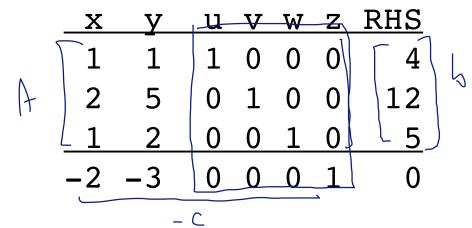
x, y \ge 0
```

Review: LPs

- Polyhedral feasible set
 - infeasible (unhappy ball)
 - unbounded (where's my ball?)
- Optimum at a vertex (= a 0-face)
- Transforming LPs
 - ▶ changing \ge to \le to =
 - getting rid of free vars or bounded vars

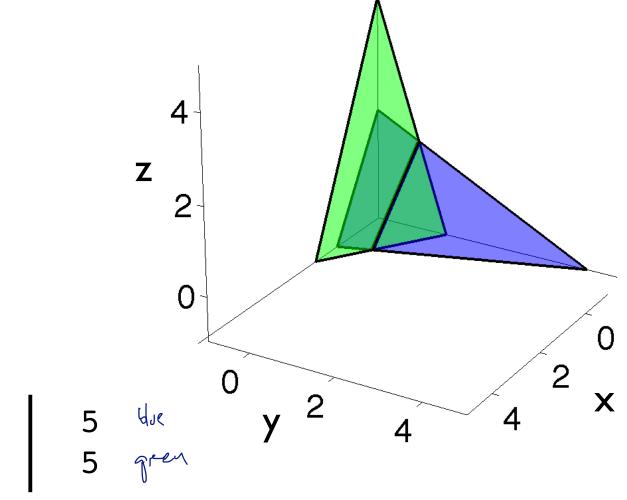
Review: LPs

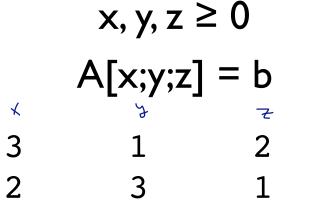
• Tableau:



- Row operations to get equivalent tableaux
- Basis (more or less corresponds to a corner)
 - use row ops to make m×m block of tableau = identity matrix
 - set nonbasic vars = 0: enough constraints to fully specify all other variables (so, a 0-face, if it's feasible)

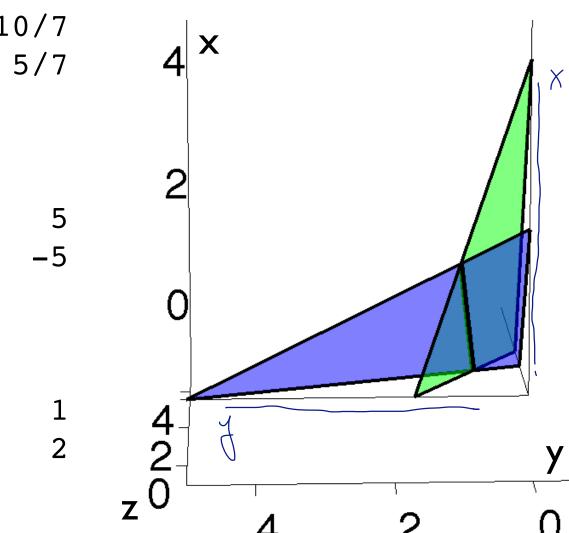
Ineq form is projected std form





Three bases

5/7 10/7 -1/75/7 $-5 \le z \le 2$ 1/5 7/5 $x \le 5$ $x \le 10/7$

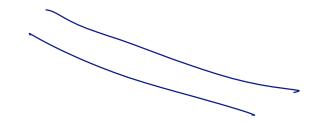


What if we can't pick basis?

- E.g., suppose A doesn't have full row rank
 - can't pick m linearly independent cols
- Ex:

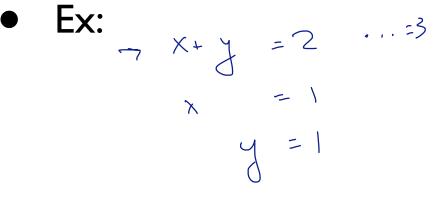
$$\rightarrow$$
 3x + 2y + 1z = 3

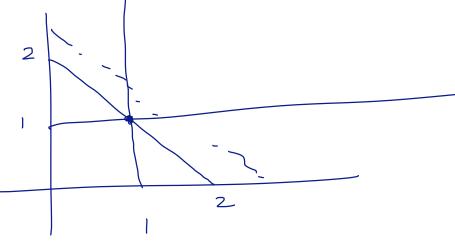
$$\rightarrow$$
 6x + 4y + 2z = § 7



What if we can't pick basis?

- E.g., suppose fewer vars than constraints
 - ▶ A taller than it is wide, $m \ge n$
 - can't pick enough cols of A to make a square matrix





Nonsingular

- We can assume
 - n ≥ m (at least as many vars as constrs)
 - A has full row rank
- Else, drop rows (maintaining rank) until it's true
- Called nonsingular standard form LP

Naive (sloooow) algorithm

- Put in nonsingular standard form
- Iterate through all subsets of vars of vars

 $O(M^3)$

- ▶ if m constraints, how many subsets?
- Check each for
 - full rank ("basis-ness")
 - Feasibility (RHS ≥ 0)

- O(m3 (m))
- If pass both tests, compute objective
- Maintain running winner, return at end

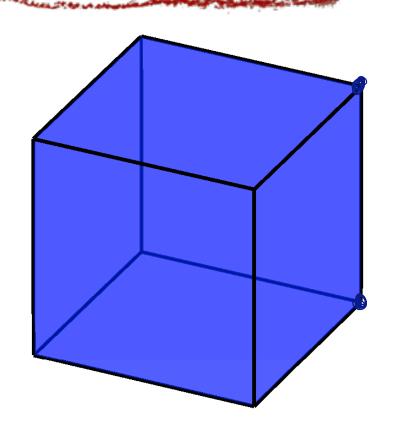
Improving our search

- Naive: enumerate all possible bases
- Smarter: maybe neighbors of good bases are also good?
- Simplex algorithm: repeatedly move to a neighboring basis to improve objective
 - continue to assume nonsingular standard form LP

Neighboring bases

- Two bases are neighbors if they share (m-I) variables
- Neighboring feasible bases correspond to vertices connected by an edge

X	У	Z	u	V	W	RHS
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	0	1	0	0	1	1



def'n: pivot, enter, exit

Example

max z = 2x + 3y s.t. $x + y \le 4$ $2x + 5y \le 12$

$$x + 2y \le 5$$

x ≤ 4

	1						
X	У	S	t	u	V	Z	RHS
1	1	1	0	0	0	0	4
2	5	0	1	0	0	0	12
1	2	0	0	1	0	0	5
1	0	0	0	0	1	0	4
-2	- 3	0	0	0	0	1	0

2

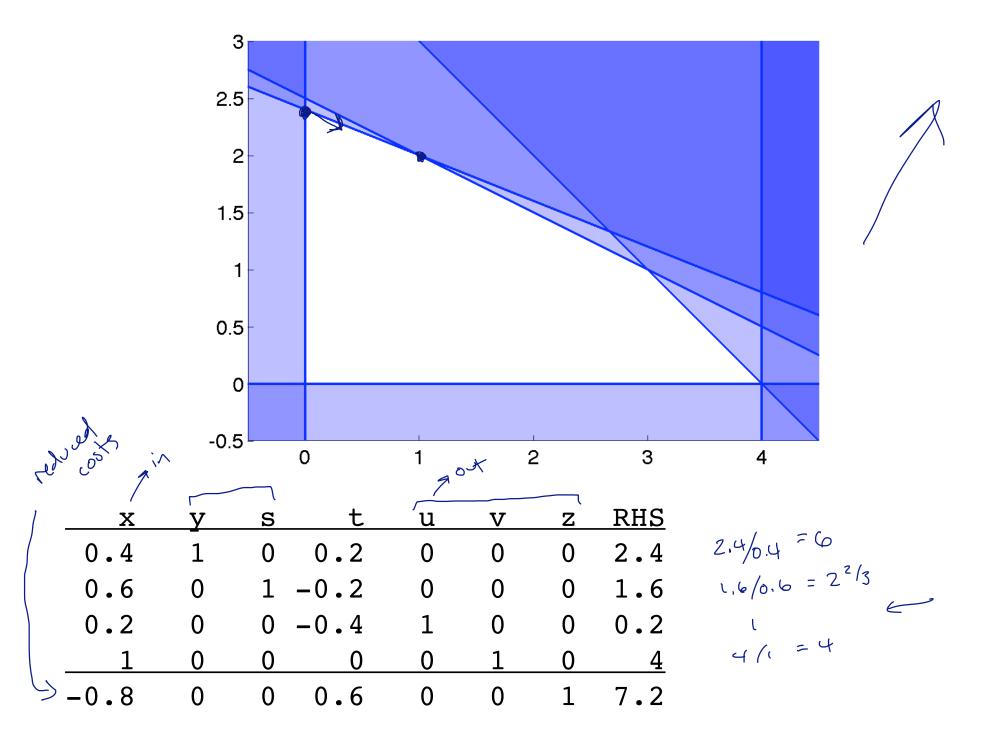
1.5

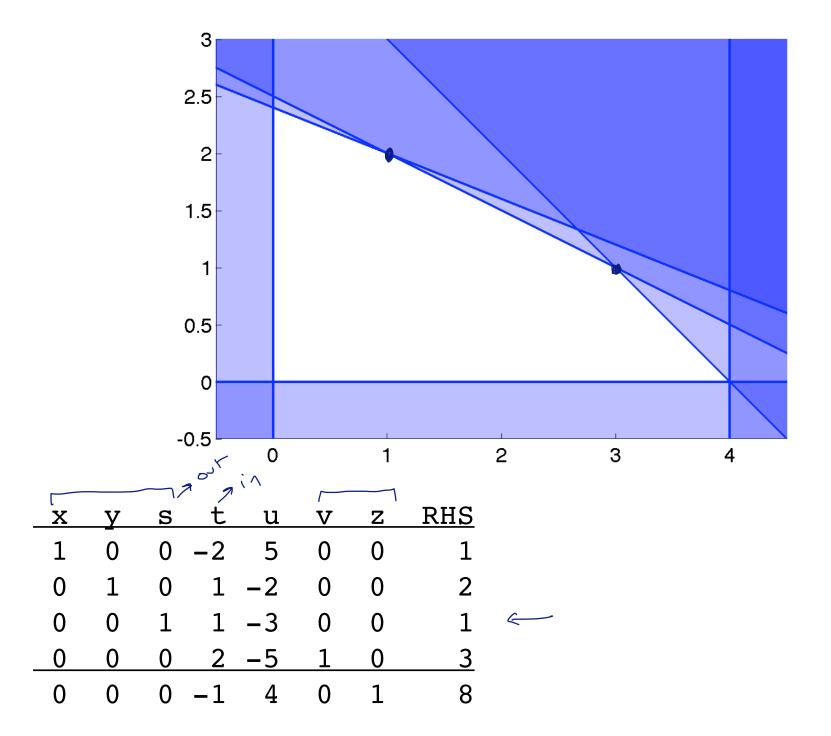
0.5

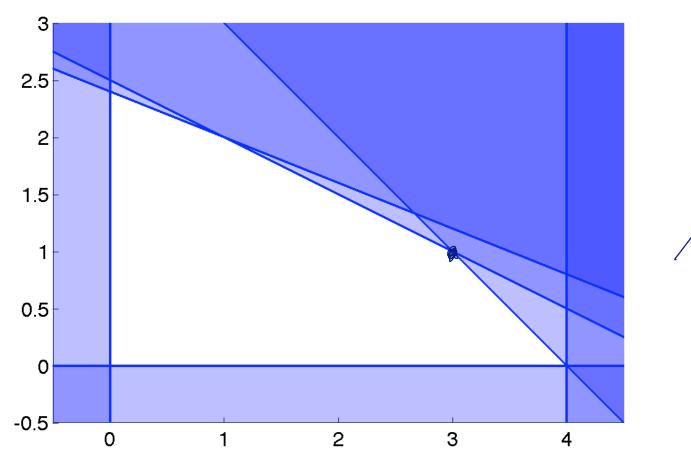
0

-0.5

1			
2	3	>>> ×	1
Y += D S -= D t -= S; U : Z +=	∆ 2∆ no chan		-/s- 5/2

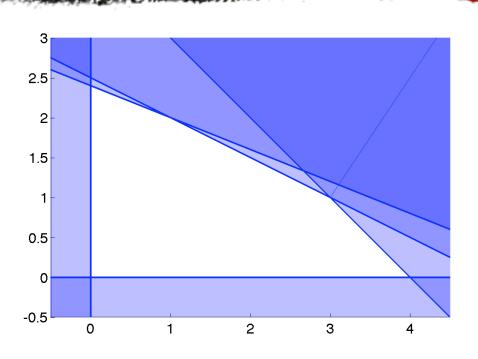






<i></i>	$\overline{}$						
X	У	S	<u>t</u>	u	<u>'V</u>	Z	RHS
1	0	2	0	-1	0	0	3
0	1	-1	0	1	0	0	1
0	0	1	1	- 3	0	0	1
0	0	-2	0	1	1	0	<u> </u>
0	0	$(\hat{1})$	0	1	0	1	9

Initial basis



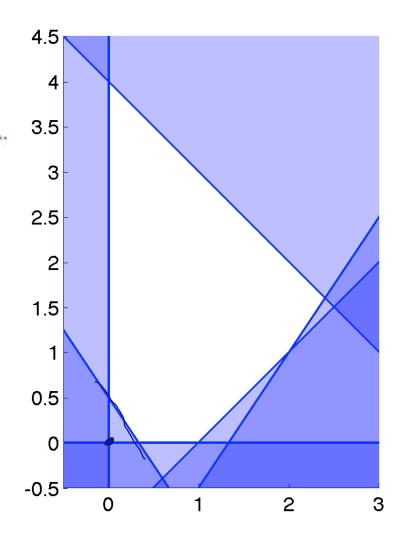
X	У	u	V	W	RHS
	1				4
2	5	0	1	0	12
1	2	0	0	1	5

- So far, assumed we started w/ feasible basic solution—in fact, it was trivial to find one
- Not always so easy in general

Big M

$$0 \le x$$
, y, $s1...s6$ $q \ge 0$
 $max x - 2y - Mq$

X	У	s]	ac	<u>cks</u>	5	Z	9	RHS
1	1	1	0	0	0	0	•	4
3	-2	0	1	0	0	0		4
1	-1	0	0	1	0	0		1
<u>†3</u>	+2	0	0	0	-1	0	+1	+1
-1	2	0	0	0	0	1		0



- Can make it easy: variant of slack trick
 - ▶ For each violated constraint, add var w/ coeff I
 - ▶ Penalize in objective; negate constraint

Simplex in one slide

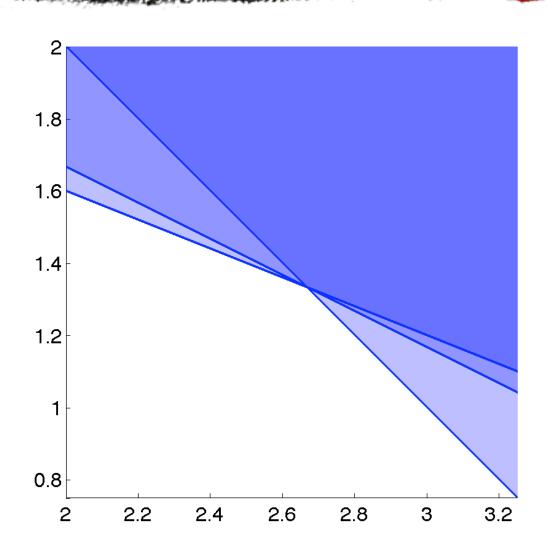
(skipping degeneracy handling)

- Given a nonsingular standard-form max LP
- Start from a feasible basis and its tableau
 - big-M if needed
- Pick non-basic variable w/ coeff in objective ≤ 0
- Pivot it into basis, getting neighboring basis
 - select exiting variable to keep feasibility
- Repeat until all non-basic variables have objective ≥ 0

Degeneracy

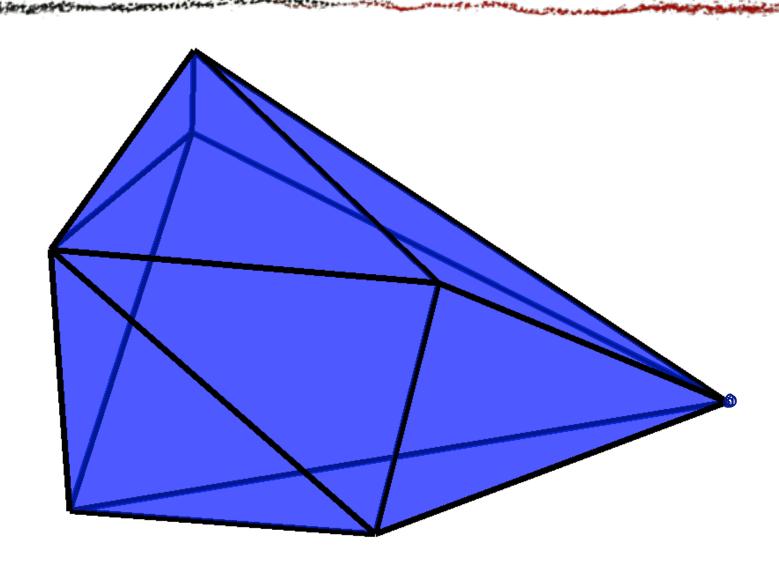
- Not every set of m variables yields a corner
 - some have rank < m (not a basis)</p>
 - some are infeasible
- Can the reverse be true? Can two bases yield the same corner?

Degeneracy



У	u	V	W	RHS
1	1	0	0	4
5	0	1	0	12
2	0	0	1	16/3
0	0	-2	5	8/3
1	0	1	-2	4/3
0	1	1	-3	0
0	2	0	-1	8/3
1	-1	0	1	4/3
0	1	1	-3	0
	1 5 2 0 1 0	1 1 5 0 2 0 0 0 1 0 0 1 0 2 1 -1	1 1 0 5 0 1 2 0 0 0 0 -2 1 0 1 0 1 1 0 2 0 1 -1 0	1 1 0 0 5 0 1 0 2 0 0 1 0 0 -2 5 1 0 1 -2 0 1 1 -3 0 2 0 -1 1 -1 0 1

Degeneracy in 3D

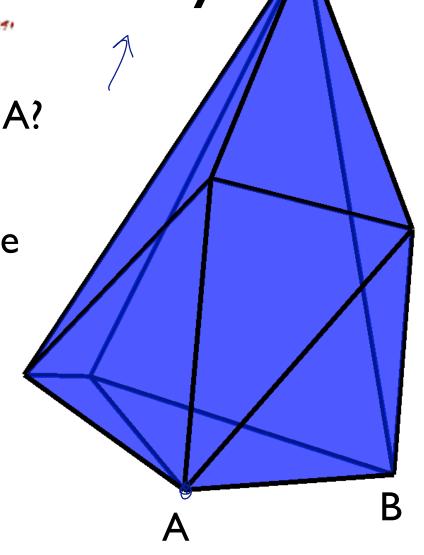


Bases & degeneracy

$$\qquad \qquad \left(\begin{array}{c} \varsigma \\ 3 \end{array} \right)$$

 Are they all neighbors of one another?

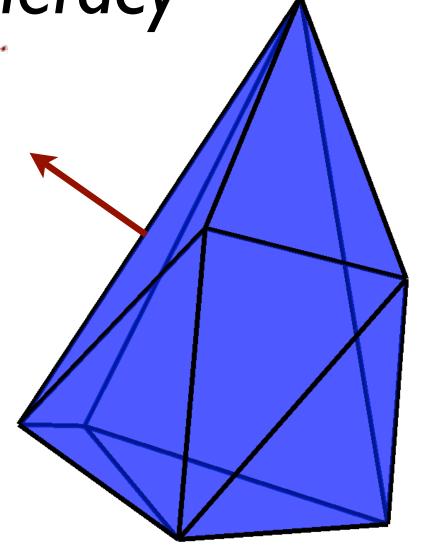
Are they all neighbors of B?



Dual degeneracy

More than m entries in objective row = 0

- so, a nonbasic variable has reduced cost = 0
- objective orthogonal to a d-face for d ≥ I



Handling degeneracy

Sometimes have to make pivots that don't improve objective

or kinery

stay at same corner (exiting variable was already 0)

Juan

 move to another corner w/ same objective (coeff of entering variable in objective was 0)

- Problem of cycling
 - need an anti-cycling rule (there are many...)
 - e.g.: add tiny random numbers to obj, RHS