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Review

• Newton w/ equality constraints

• Examples:
‣ bundle adjustment

‣ MLE in exponential families

• Convergence: damped phase, quadratic phase

• Compare: Newton, FISTA, (stoch) (sub)gradient

• Variations: trust region, quasi-Newton, Gauss-
Newton, Levenberg-Marquardt
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Variations: Fisher scoring

• Recall Newton in exponential family

• Can use this formula in place of Newton, even 
if not an exponential family
‣ descent direction, even w/ no regularization

‣ “Hessian” is independent of data

‣ often a wider radius of convergence than Newton

‣ can be superlinearly convergent
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Var[x | θ]dθ = E[x | θ]− x̄
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Administrivia

• HW2 due now

• HW3 out tonight (hopefully)

• Final project update
‣ project milestone report requirements on web site

‣ final poster session (3:30–6:30 12/12 NSH Atrium, 
3PM setup)

‣ set up meetings w/ TA mentors
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Linear programs

• n variables: x = (x1, x2, …, xn)T

‣ ranges: [li, ui]

• Objective:

• m constraints (equality or inequality):

• Example:
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Sketching an LP
max 2x+3y s.t.

 x + y ≤ 4


 2x + 5y ≤ 12

 x + 2y ≤ 5


 x, y ≥ 0
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Did the prof get it right?
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Polyhedra

• hull({points}) or                                                           
∩({halfspaces})

• Vertices, edges, faces
‣ in general: d-faces

‣ n vars: d-face = set of feasible points that make        
independent halfspace constrs tight

‣ therefore, dimensionality =

‣ n vars, m≥n halfspaces: can have     -faces thru     -faces
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Matrix notation

• For a vector of variables v and a constant 
matrix A and vector b,
‣ Av ≤ b   [componentwise]

• Objective: cTv

• E.g.:
‣ A =                     b =                   c =

max 2x+3y s.t.

 x + y ≤ 4


 2x + 5y ≤ 12

 x + 2y ≤ 5

 x, y ≥ 0
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Finding the optimum

10

max 2x+3y s.t.

 x + y ≤ 4


 2x + 5y ≤ 12

 x + 2y ≤ 5


 x, y ≥ 0
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Where’s my ball?
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Unhappy ball

‣ max  2x + 3y  subject to

‣ x ≥ 5

‣ x ≤ 1
12
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Convention

• min over empty set =

• max over empty set =

• Adding an element always
‣  

‣  
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Linear feasibility

• find (x, y) s.t.
‣ x + y ≤ 4


‣ 2x + 5y ≤ 12

‣ x + 2y ≤ 5

‣ x, y ≥ 0


• Any easier than LP?

14
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Binary search

• find (x, y) s.t.
‣ x + y ≤ 4


‣ 2x + 5y ≤ 12

‣ x + 2y ≤ 5

‣ x, y ≥ 0


15

vs. max 2x+3y s.t. ↑
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Transforming LPs

• Getting rid of inequalities (except variable 
bounds)

• Getting rid of equalities
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x + y ≤ 4

x + 2y = 4
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Transforming LPs

• Getting rid of free vars

• Getting rid of bounded vars
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max x + y s.t.
2x + y ≤ 3

y ≥ 0

x ∈ [2, 5]
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Standard form LP

• all variables are nonnegative

• all constraints are equalities

• E.g.: max cTq s.t.  Aq = b, q ≥ 0
‣ q = [x y u v w]T

max 2x+3y s.t.
x + y ≤ 4 

2x + 5y ≤ 12
x + 2y ≤ 5

x, y ≥ 0 

18

tableau
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Objective in tableau

• Add an extra variable z
‣ constrain it to = the objective

max 2x+3y s.t.
x + y ≤ 4 

2x + 5y ≤ 12
x + 2y ≤ 5

x, y ≥ 0 

19

 x  y  u v w z RHS
 1  1  1 0 0 0   4
 2  5  0 1 0 0  12
 1  2  0 0 1 0   5
-2 -3  0 0 0 1   0



Geoff Gordon—10-725 Optimization—Fall 2012

Standard v. inequality forms
• max 2x+3y s.t.
‣ x + y ≤ 4


‣ 2x + 5y ≤ 12

‣ x + 2y ≤ 5

‣ x, y ≥ 0


• or s.t.
‣ x + y + u = 4

‣ 2x + 5y + v = 12

‣ x + 2y + w = 5

‣ x, y, u, v, w ≥ 0
20

if std fm has n vars, m eqns
then ineq form has n–m vars 

and m+(n–m)=n ineqs
(here m = 3, n = 5)
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• Inequality form
‣ n vars, m≥n halfspaces: can have 0-faces thru n-faces

‣ d-face makes n–d inequalities tight

• Standard form
‣ n nonneg. vars, m≤n equalities:      -faces thru        -faces

21

Faces in standard 
form
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Why is standard form useful?

• Can take linear combinations of constraints

• E.g.,   x + 2y = 4   &   2x + 3y = 5

• Easy to manipulate via row operations

• Easy to find corners by Gaussian 
elimination

22
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Example
1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set x, y = 0

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set v, w = 0

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

set x, u = 0

23
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What happened?

24



Geoff Gordon—10-725 Optimization—Fall 2012

Row operations

• Can replace any row with linear 
combination of existing rows
‣ as long as we don’t lose independence

• Eliminate x from 2nd and 3rd rows

A              b
1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

25
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Presto change-o

• Which are the slacks now?
‣  

‣  

• Eliminating x from all but one 
constr:

• Constraint we used to eliminate x:

1 1  1 0 0   4
0 3 -2 1 0   4
0 1 -1 0 1   1

26

x y  u v w RHS
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The “new” LP

y + u ≤ 4
3y – 2u ≤ 4
y – u ≤ 1
y, u ≥ 0

objective: was z = 2x + 3y

27

 x  y  u v w z RHS 
 1  1  1 0 0 0   4
 0  3 -2 1 0 0   4
 0  1 -1 0 1 0   1
-2 -3  0 0 0 1   .
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Sketching standard form
• Drop the slacks, sketch in 

inequality form

• May be several ways

1 1 1 0 0   4
2 5 0 1 0   12
1 2 0 0 1   5

1 1  1 0 0   4
0 3 -2 1 0   4
0 1 -1 0 1   1

28
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What if there aren’t slacks?

• Use row ops to make some: 
‣ u, v, w ≥ 0

‣ u + 2v + w = 3

‣ 3u + v – w = 5

29
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Matlab version
A = [1  2  1;
     3  1 -1];
b = [3;5];
A(:,1:2) \ A
ans =
    1.0000         0   -0.6000
         0    1.0000    0.8000

A(:,1:2) \ b
ans =
    1.4000
    0.8000

30
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Matlab with z

‣ always pick z’s column (here, col 6)

‣ remember z is unconstrained

 x  y  u v w z RHS
 1  1  1 0 0 0   4
 2  5  0 1 0 0  12
 1  2  0 0 1 0   5
-2 -3  0 0 0 1   0

x  y  u  v w z RHS
1  1  1  0 0 0   4 
0  3 -2  1 0 0   4 
0  1 -1  0 1 0   1 
0 -1  2  0 0 1   8 

max z=2x+3y s.t.
x + y + u = 4
2x + 5y + v = 12
x + 2y + w = 5
x, y, u, v, w ≥ 0

31

A and b result = A(:,[1 4 5 6]) \ [A b]
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Basis

• {u, v, w, z} and {x, v, w, z} are bases
‣ elements = basic variables (always m of them)

‣ easy to write values of basic variables in terms of 
non-basic ones

‣ e.g., set x=y=0

‣ e.g., set y=u=0

32

 x  y  u v w z RHS
 1  1  1 0 0 0   4
 2  5  0 1 0 0  12
 1  2  0 0 1 0   5
-2 -3  0 0 0 1   0

x  y  u  v w z RHS
1  1  1  0 0 0   4 
0  3 -2  1 0 0   4 
0  1 -1  0 1 0   1 
0 -1  2  0 0 1   8 
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Basic solutions

33
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Bases ⟷  corners
• Std form: n vars, m equations
‣ fix ineq form: n–m vars, n ineqs

• Pick a basis B for std form
‣ m basic vars (≥ 0), n–m nonbasic (set to 0)

• Each nonbasic var yields a tight inequality
‣ var is either a slack or explicit in ineq fm

‣ explicit: one of n–m “trivial” (x≥0) ineqs tight

‣ slack: one of m “real” ineqs tight

• Ineq fm: n–m vars and n–m tight ineqs → corner
34
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What if we can’t pick basis?

• E.g., suppose A doesn’t have full row rank
‣ can’t pick m linearly independent cols

• Ex:

35
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What if we can’t pick basis?

• E.g., suppose fewer vars than constraints
‣ A taller than it is wide, m ≥ n

‣ can’t pick enough cols of A to make a square 
matrix

• Ex:

36
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Nonsingular

• We can assume
‣ n ≥ m (at least as many vars as constrs)

‣ A has full row rank

• Else, drop rows (maintaining rank) until it’s true

• Called nonsingular standard form LP

37
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Naive (sloooow) algorithm

• Put in nonsingular standard form

• Iterate through all subsets of n vars
‣ if m constraints, how many subsets?

• Check each for
‣ full rank (“basis-ness”)

‣ feasibility (RHS ≥ 0)

• If pass both tests, compute objective

• Maintain running winner, return at end

38
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Improving our search

• Naive: enumerate all possible bases

• Smarter: maybe neighbors of good bases are 
also good?

• Simplex algorithm: repeatedly move to a 
neighboring basis to improve objective
‣ continue to assume nonsingular standard form LP

39
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Neighboring bases
• Two bases are neighbors if 

they share (m–1) variables

• Neighboring feasible bases 
correspond to vertices 
connected by an edge

x y z u v w RHS
1 0 0 1 0 0   1
0 1 0 0 1 0   1
0 0 1 0 0 1   1

40

def ’n: pivot, enter, exit
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Example

  x   y   s   t   u   v   z  RHS
  1   1   1   0   0   0   0    4 
  2   5   0   1   0   0   0   12 
  1   2   0   0   1   0   0    5 
  1   0   0   0   0   1   0    4 
 -2  -3   0   0   0   0   1    0 

max z = 2x + 3y s.t.
x + y ≤ 4
2x + 5y ≤ 12
x + 2y ≤ 5
x ≤ 4

41



   x   y   s    t   u   v   z  RHS
 0.4   1   0  0.2   0   0   0  2.4
 0.6   0   1 -0.2   0   0   0  1.6
 0.2   0   0 -0.4   1   0   0  0.2
   1   0   0    0   0   1   0    4
-0.8   0   0  0.6   0   0   1  7.2



 x  y  s  t  u  v  z  RHS
 1  0  0 -2  5  0  0    1 
 0  1  0  1 -2  0  0    2 
 0  0  1  1 -3  0  0    1 
 0  0  0  2 -5  1  0    3 
 0  0  0 -1  4  0  1    8 



 x  y  s  t  u  v  z  RHS
 1  0  2  0 -1  0  0    3 
 0  1 -1  0  1  0  0    1 
 0  0  1  1 -3  0  0    1 
 0  0 -2  0  1  1  0    1 
 0  0  1  0  1  0  1    9 
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Initial basis

• So far, assumed we started w/ feasible basic 
solution—in fact, it was trivial to find one

• Not always so easy in general

x y u v w RHS
1 1 1 0 0   4
2 5 0 1 0  12
1 2 0 0 1   5

45
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Big M

• Can make it easy: variant of slack trick
‣ For each violated constraint, add var w/ coeff –1

‣ Penalize in objective

0 ≤ x, y, s1..s6
max x - 2y

 x  y   slacks   z     RHS
 1  1   1 0 0 0  0       4 
 3 -2   0 1 0 0  0       4 
 1 -1   0 0 1 0  0       1 
-3 -2   0 0 0 1  0      -1 
-1  2   0 0 0 0  1       0

46
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Simplex in one slide
(skipping degeneracy handling)

• Given a nonsingular standard-form max LP

• Start from a feasible basis and its tableau
‣ big-M if needed

• Pick non-basic variable w/ coeff in objective ≤ 0

• Pivot it into basis, getting neighboring basis
‣ select exiting variable to keep feasibility

• Repeat until all non-basic variables have 
objective ≥ 0

47
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Degeneracy

• Not every set of m variables yields a corner
‣ some have rank < m (not a basis)

‣ some are infeasible

• Can the reverse be true?  Can two bases yield 
the same corner?

48
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Degeneracy
x  y  u  v  w  RHS
1  1  1  0  0    4  
2  5  0  1  0   12  
1  2  0  0  1 16/3 

1  0  0 -2  5  8/3
0  1  0  1 -2  4/3
0  0  1  1 -3    0 

1  0  2  0 -1  8/3
0  1 -1  0  1  4/3
0  0  1  1 -3    0 

49
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Degeneracy in 3D

50
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Bases & degeneracy

• How many bases for vertex A?
‣  

• Are they all neighbors of one 
another? 
‣  

• Are they all neighbors of B?
‣  

A B

51
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Dual degeneracy

• More than m entries in 
objective row = 0
‣ so, a nonbasic variable 

has reduced cost = 0

‣ objective orthogonal to 
a d-face for d ≥ 1

52
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Handling degeneracy

• Sometimes have to make pivots that don’t 
improve objective
‣ stay at same corner (exiting variable was already 0)

‣ move to another corner w/ same objective (coeff of 
entering variable in objective was 0)

• Problem of cycling
‣ need an anti-cycling rule (there are many…)

‣ e.g.: add tiny random numbers to obj, RHS
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