### Linear programs

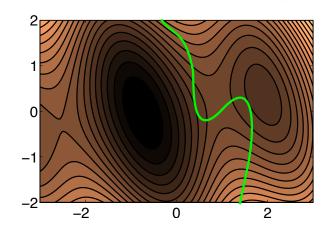
10-725 Optimization Geoff Gordon Ryan Tibshirani

### Review

- Newton w/ equality constraints
- Examples:
  - bundle adjustment
  - MLE in exponential families



- Compare: Newton, FISTA, (stoch) (sub)gradient
- Variations: trust region, quasi-Newton, Gauss-Newton, Levenberg-Marquardt



### Variations: Fisher scoring

Recall Newton in exponential family

$$Var[x \mid \theta]d\theta = E[x \mid \theta] - \bar{x}$$

- Can use this formula in place of Newton, even if not an exponential family
  - descent direction, even w/ no regularization
  - "Hessian" is independent of data
  - often a wider radius of convergence than Newton
  - can be superlinearly convergent

### Administrivia

- HW2 due now
- HW3 out tonight (hopefully)
- Final project update
  - project milestone report requirements on web site
  - final poster session (3:30–6:30 12/12 NSH Atrium, 3PM setup)
  - set up meetings w/ TA mentors

# Linear programs

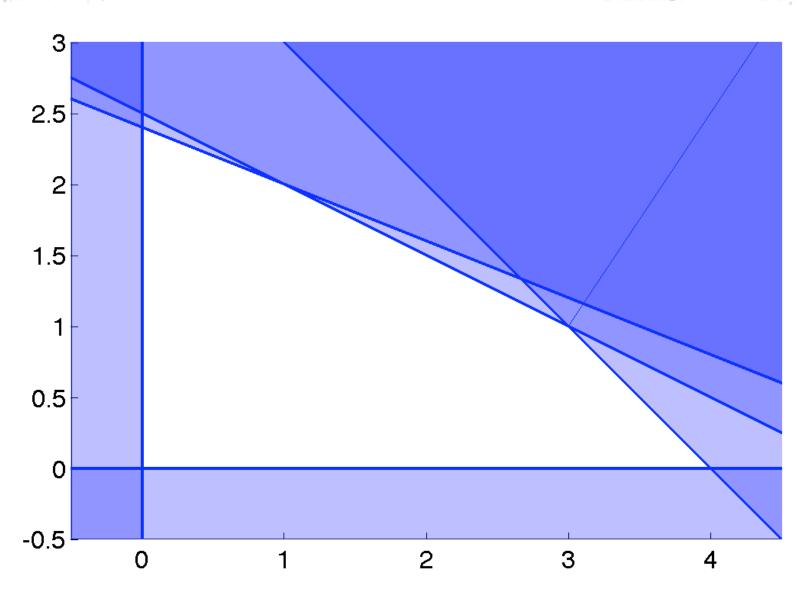
- n variables:  $x = (x_1, x_2, ..., x_n)^T$ 
  - ranges: [l<sub>i</sub>, u<sub>i</sub>]
- Objective:
- m constraints (equality or inequality):

• Example:

# Sketching an LP

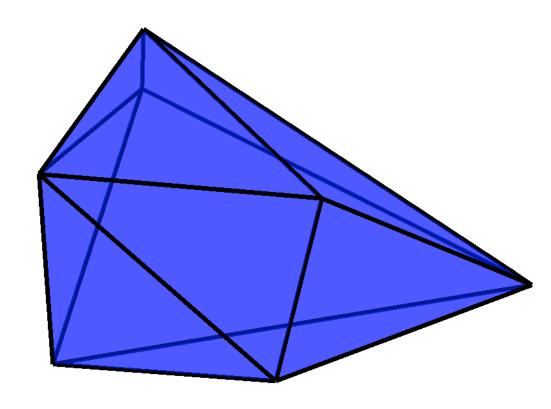
max 2x+3y s.t.  $x + y \le 4$   $2x + 5y \le 12$   $x + 2y \le 5$  $x, y \ge 0$ 

# Did the prof get it right?



# Polyhedra

- hull({points}) or∩({halfspaces})
- Vertices, edges, faces
  - in general: d-faces
    - n vars: d-face = set of feasible points that make independent halfspace constrs tight
    - therefore, dimensionality =
  - ▶ n vars, m≥n halfspaces: can have -faces thru -faces



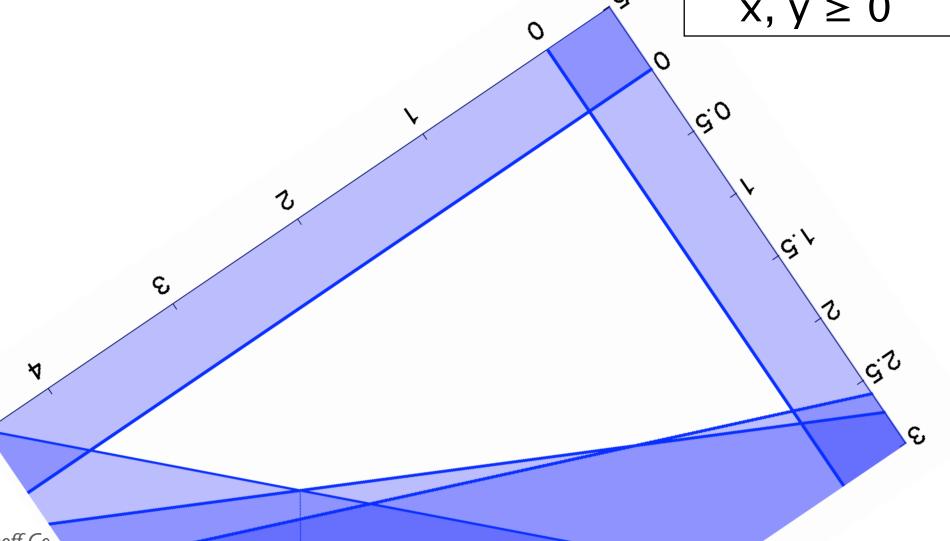
### Matrix notation

- For a vector of variables v and a constant matrix A and vector b,
  - Av ≤ b [componentwise]
- Objective: c<sup>T</sup>v
- E.g.:

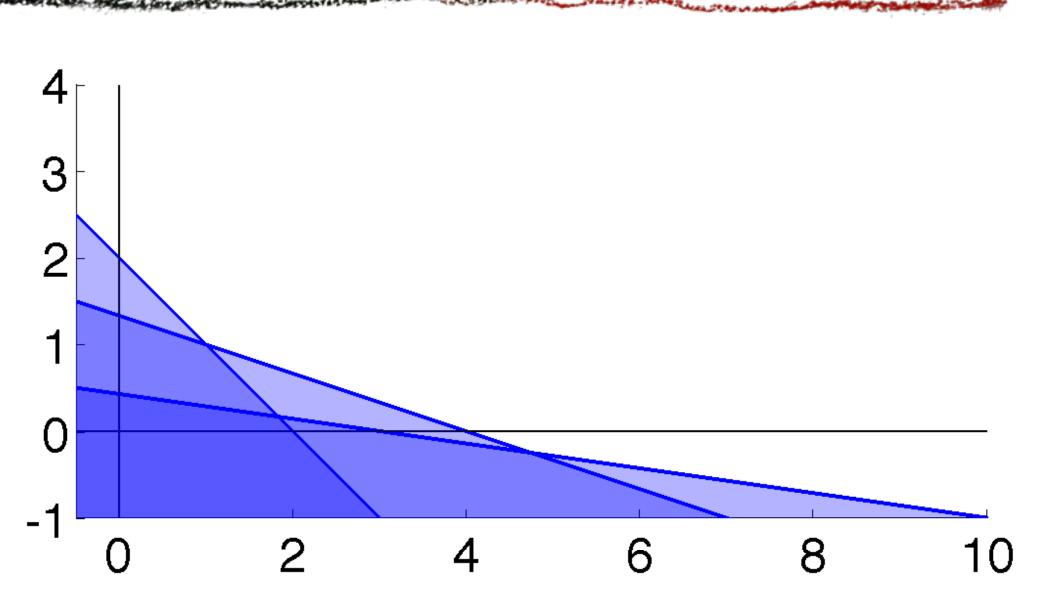
max 
$$2x+3y$$
 s.t.  
 $x + y \le 4$   
 $2x + 5y \le 12$   
 $x + 2y \le 5$   
 $x, y \ge 0$ 

# Finding the optimum

max 2x+3y s.t.  $x + y \le 4$   $2x + 5y \le 12$   $x + 2y \le 5$  $x, y \ge 0$ 



# Where's my ball?



### Unhappy ball

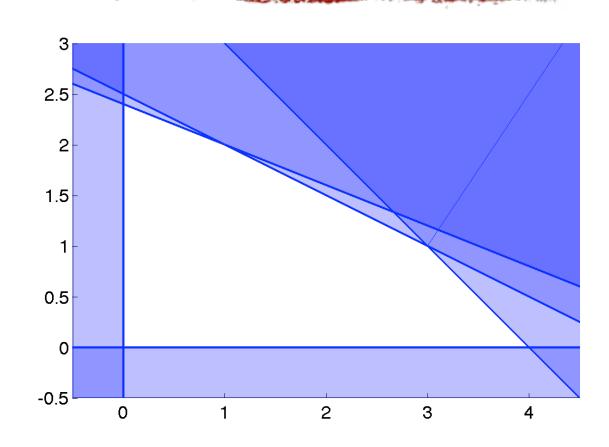
- $\blacktriangleright$  max 2x + 3y subject to
- x ≥ 5
- x ≤ |

### Convention

- min over empty set =
- max over empty set =
- Adding an element always

### Linear feasibility

- find (x, y) s.t.
  - $\rightarrow$  x + y  $\leq$  4
  - $2x + 5y \le 12$
  - $\rightarrow$  x + 2y  $\leq$  5
  - x, y ≥ 0



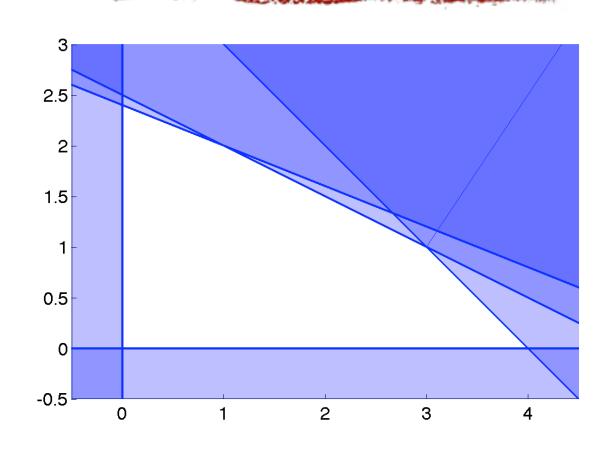
• Any easier than LP?

# Binary search

- find (x, y) s.t.
  - $\rightarrow$  x + y  $\leq$  4

  - $\rightarrow$  x + 2y  $\leq$  5
  - x, y ≥ 0

vs. max 2x+3y s.t.  $\uparrow$ 



### Transforming LPs

Getting rid of inequalities (except variable bounds)
 x + y ≤ 4

Getting rid of equalities

$$x + 2y = 4$$

# Transforming LPs

Getting rid of free vars

$$\max x + y \text{ s.t.}$$

$$2x + y \leq 3$$

$$y \geq 0$$

Getting rid of bounded vars

$$x \in [2, 5]$$

### Standard form LP

- all variables are nonnegative
- all constraints are equalities
- E.g.: max  $c^Tq$  s.t.  $Aq = b, q \ge 0$

$$\rightarrow$$
 q = [x y u v w]<sup>T</sup>

max 
$$2x+3y$$
 s.t.  
 $x + y \le 4$   
 $2x + 5y \le 12$   
 $x + 2y \le 5$   
 $x, y \ge 0$ 

tableau

### Objective in tableau

- Add an extra variable z
  - constrain it to = the objective

|   | X  | У  | <u>u</u> | V | W | Z | <u>RHS</u> |
|---|----|----|----------|---|---|---|------------|
|   | 1  | 1  | 1        | 0 | 0 | 0 | 4          |
|   | 2  | 5  | 0        | 1 | 0 | 0 | 12         |
|   | 1  | 2  | 0        | 0 | 1 | 0 | 5          |
| • | -2 | -3 | 0        | 0 | 0 | 1 | 0          |

| max 2x+3y s.t.   |
|------------------|
| $x + y \le 4$    |
| $2x + 5y \le 12$ |
| $x + 2y \leq 5$  |
| $x, y \ge 0$     |

# Standard v. inequality forms

#### max 2x+3y s.t.

$$\rightarrow$$
 x + y  $\leq$  4

$$\rightarrow$$
 x + 2y  $\leq$  5

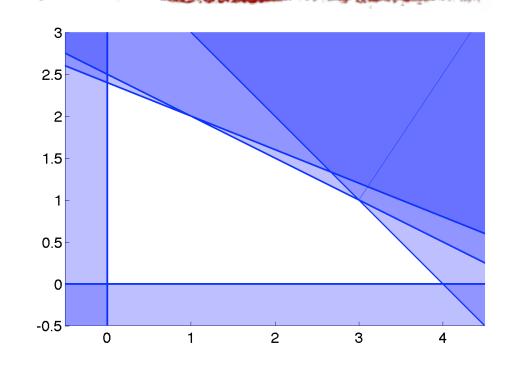
#### • or s.t.

$$x + y + u = 4$$

$$\rightarrow$$
 2x + 5y + v = 12

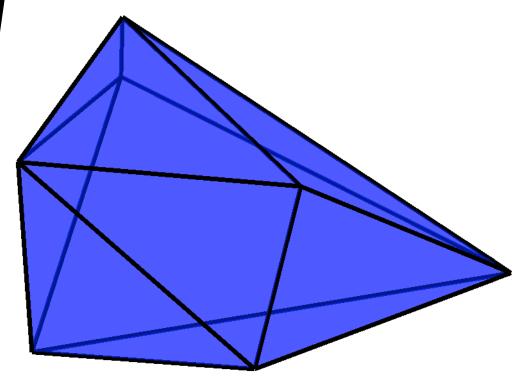
$$x + 2y + w = 5$$

 $\rightarrow$  x, y, u, v, w  $\geq$  0



if std fm has n vars, m eqns then ineq form has n-m vars and m+(n-m)=n ineqs (here m=3, n=5)

# Faces in standard form



- Inequality form
  - ▶ n vars, m≥n halfspaces: can have 0-faces thru n-faces
  - d-face makes n—d inequalities tight
- Standard form
  - ▶ n nonneg. vars, m≤n equalities: -faces thru -faces

# Why is standard form useful?

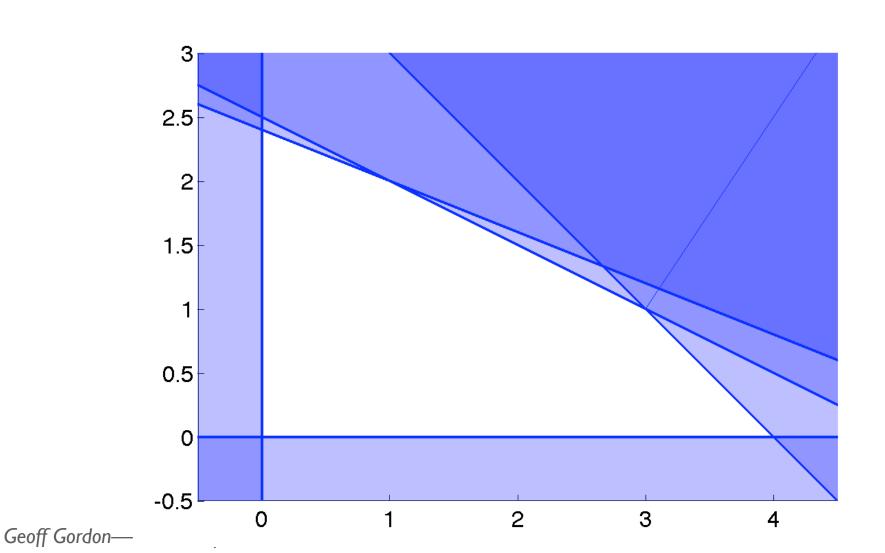
- Can take linear combinations of constraints
- E.g., x + 2y = 4 & 2x + 3y = 5

- Easy to manipulate via row operations
- Easy to find corners by Gaussian elimination

# Example

| 1 1 1 0 0<br>2 5 0 1 0<br>1 2 0 0 1 | 4<br>12<br>5 | set $x, y = 0$    |
|-------------------------------------|--------------|-------------------|
| 1 1 1 0 0<br>2 5 0 1 0<br>1 2 0 0 1 | 4<br>12<br>5 | set $v$ , $w = 0$ |
| 1 1 1 0 0<br>2 5 0 1 0<br>1 2 0 0 1 | 4<br>12<br>5 | set $x$ , $u = 0$ |

### What happened?



### Row operations

- Can replace any row with linear combination of existing rows
  - as long as we don't lose independence
- Eliminate x from 2nd and 3rd rows

```
A b 1 1 1 0 0 4 2 5 0 1 0 12 1 2 0 0 1 5
```

### Presto change-o

• Which are the slacks now?

```
    x
    y
    u
    v
    w
    RHS

    1
    1
    1
    0
    0
    4

    0
    3
    -2
    1
    0
    4

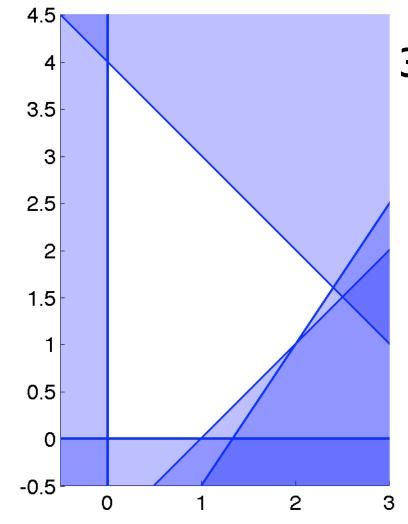
    0
    1
    -1
    0
    1
    1
```

- Eliminating x from all but one constr:
- Constraint we used to eliminate x:

### The "new" LP

objective: was z = 2x + 3y

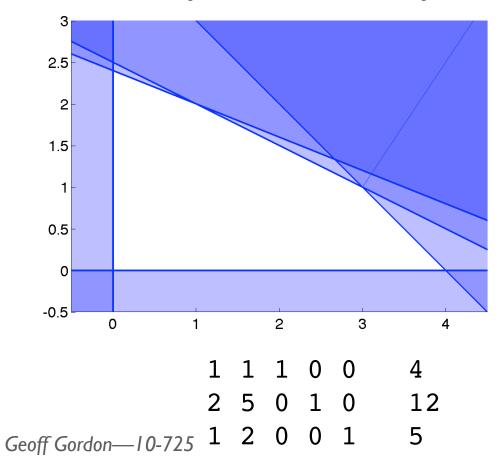
| X  | У  | u  | V | W | Z | RHS |
|----|----|----|---|---|---|-----|
| 1  | 1  | 1  | 0 | 0 | 0 | 4   |
| 0  | 3  | -2 | 1 | 0 | 0 | 4   |
| 0  | 1  | -1 | 0 | 1 | 0 | 1   |
| -2 | -3 | 0  | 0 | 0 | 1 | •   |



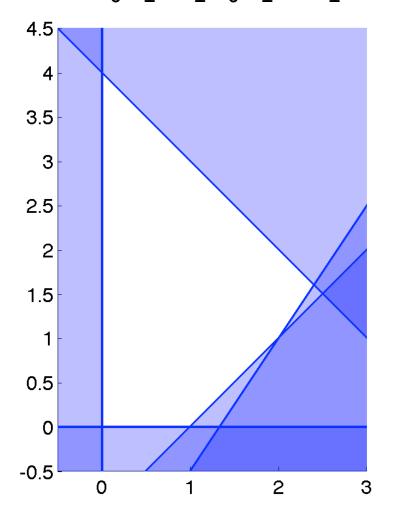
 $y + u \le 4$   $3y - 2u \le 4$   $y - u \le 1$  $y, u \ge 0$ 

# Sketching standard form

- Drop the slacks, sketch in inequality form
- May be several ways



| 1 | 1 | 1          | 0 | 0 | 4 |
|---|---|------------|---|---|---|
| 0 | 3 | -2         | 1 | 0 | 4 |
| 0 | 1 | <b>-</b> 1 | 0 | 1 | 1 |



### What if there aren't slacks?

- Use row ops to make some:
  - $\rightarrow$  u, v, w  $\geq$  0
  - u + 2v + w = 3
  - $\rightarrow$  3u + v w = 5

### Matlab version

```
A = [1 \ 2 \ 1;
    3 1 -1];
b = [3;5];
A(:,1:2) \setminus A
ans =
    1.0000
                      0 -0.6000
                1.0000 0.8000
A(:,1:2) \setminus b
ans =
    1.4000
     0.8000
```

### Matlab with z

max 
$$z=2x+3y$$
 s.t.  
 $x + y + u = 4$   
 $2x + 5y + v = 12$   
 $x + 2y + w = 5$   
 $x, y, u, v, w \ge 0$ 

- always pick z's column (here, col 6)
- remember z is unconstrained

#### A and b

#### result = $A(:,[1 4 5 6]) \setminus [A b]$

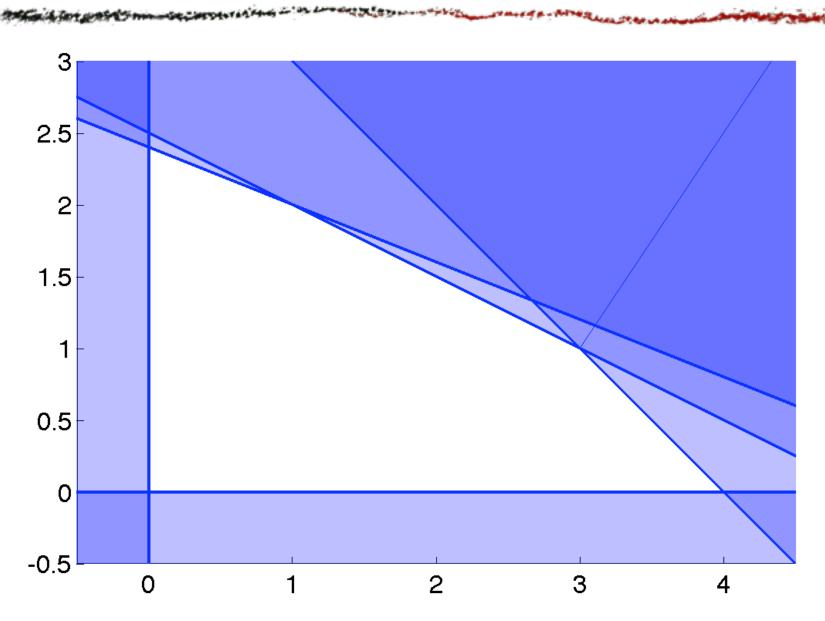
| X | У  | u  | V | W | Z | RHS |
|---|----|----|---|---|---|-----|
| 1 | 1  | 1  | 0 | 0 | 0 | 4   |
| 0 | 3  | -2 | 1 | 0 | 0 | 4   |
| 0 | 1  | -1 | 0 | 1 | 0 | 1   |
| 0 | -1 | 2  | 0 | 0 | 1 | 8   |

### Basis

- {u, v, w, z} and {x, v, w, z} are *bases* 
  - elements = basic variables (always m of them)
  - easy to write values of basic variables in terms of non-basic ones
  - e.g., set x=y=0
  - e.g., set y=u=0

| _X | У  | u | V | W | Z | RHS | <u>&gt;</u> | ζ | У  | u  | V | W | Z | RHS |
|----|----|---|---|---|---|-----|-------------|---|----|----|---|---|---|-----|
| 1  | 1  | 1 | 0 | 0 | 0 | 4   | 1           | L | 1  | 1  | 0 | 0 | 0 | 4   |
| 2  | 5  | 0 | 1 | 0 | 0 | 12  | C           | ) | 3  | -2 | 1 | 0 | 0 | 4   |
| 1  | 2  | 0 | 0 | 1 | 0 | 5   | C           | ) | 1  | -1 | 0 | 1 | 0 | 1   |
| -2 | -3 | 0 | 0 | 0 | 1 | 0   | C           | ) | -1 | 2  | 0 | 0 | 1 | 8   |

### **Basic solutions**



### Bases ←→ corners

- Std form: n vars, m equations
  - ▶ fix ineq form: n—m vars, n ineqs
- Pick a basis B for std form
  - ▶ m basic vars ( $\ge 0$ ), n—m nonbasic (set to 0)
- Each nonbasic var yields a tight inequality
  - var is either a slack or explicit in ineq fm
    - ▶ explicit: one of n-m "trivial" (x≥0) ineqs tight
    - slack: one of m "real" ineqs tight
- Ineq fm: n-m vars and n-m tight ineqs → corner

# What if we can't pick basis?

- E.g., suppose A doesn't have full row rank
  - can't pick m linearly independent cols
- Ex:

# What if we can't pick basis?

- E.g., suppose fewer vars than constraints
  - ▶ A taller than it is wide,  $m \ge n$
  - can't pick enough cols of A to make a square matrix
- Ex:

# Nonsingular

- We can assume
  - n ≥ m (at least as many vars as constrs)
  - ▶ A has full row rank
- Else, drop rows (maintaining rank) until it's true
- Called nonsingular standard form LP

# Naive (sloooow) algorithm

- Put in nonsingular standard form
- Iterate through all subsets of n vars
  - if m constraints, how many subsets?
- Check each for
  - full rank ("basis-ness")
  - Feasibility (RHS ≥ 0)
- If pass both tests, compute objective
- Maintain running winner, return at end

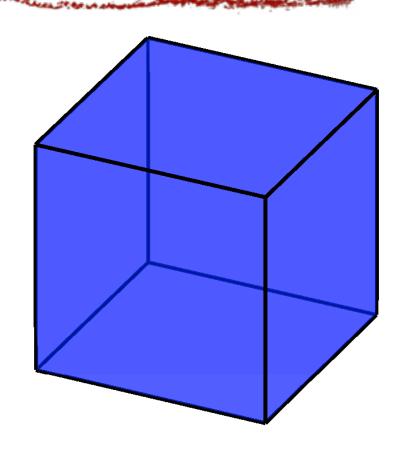
# Improving our search

- Naive: enumerate all possible bases
- Smarter: maybe neighbors of good bases are also good?
- Simplex algorithm: repeatedly move to a neighboring basis to improve objective
  - continue to assume nonsingular standard form LP

# Neighboring bases

- Two bases are neighbors if they share (m-I) variables
- Neighboring feasible bases correspond to vertices connected by an edge

| X | У | Z | u | V | W | RHS |
|---|---|---|---|---|---|-----|
|   | 0 |   |   |   |   | 1   |
| 0 | 1 | 0 | 0 | 1 | 0 | 1   |
| 0 | 0 | 1 | 0 | 0 | 1 | 1   |



def'n: pivot, enter, exit

# Example

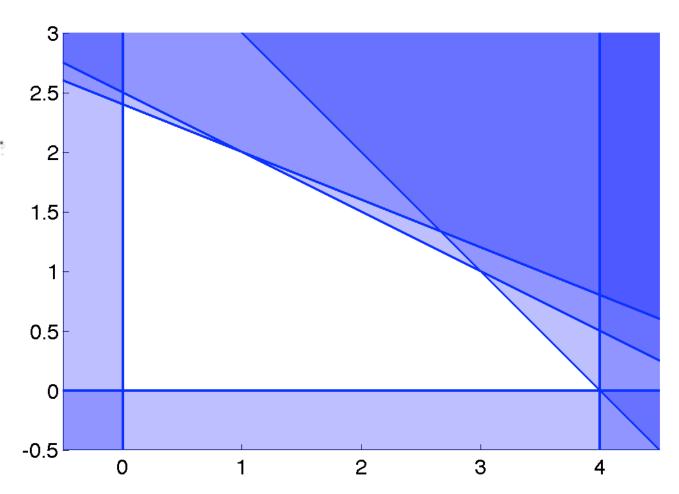
$$max z = 2x + 3y s.t.$$

$$x + y \le 4$$

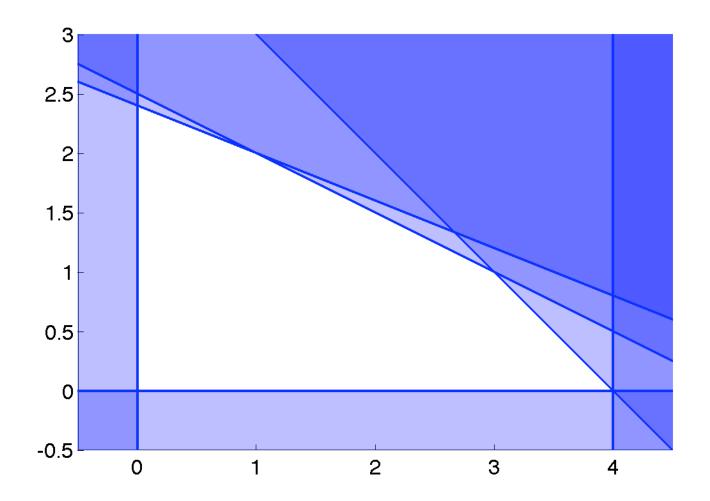
$$2x + 5y \le 12$$

$$x + 2y \le 5$$

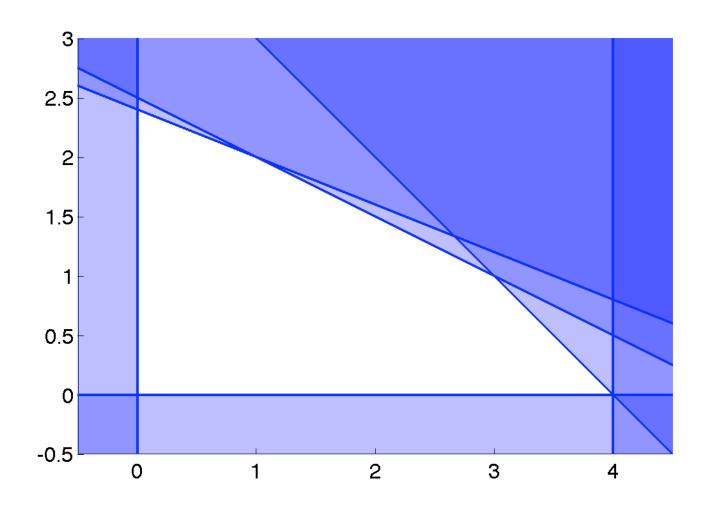
$$x \le 4$$



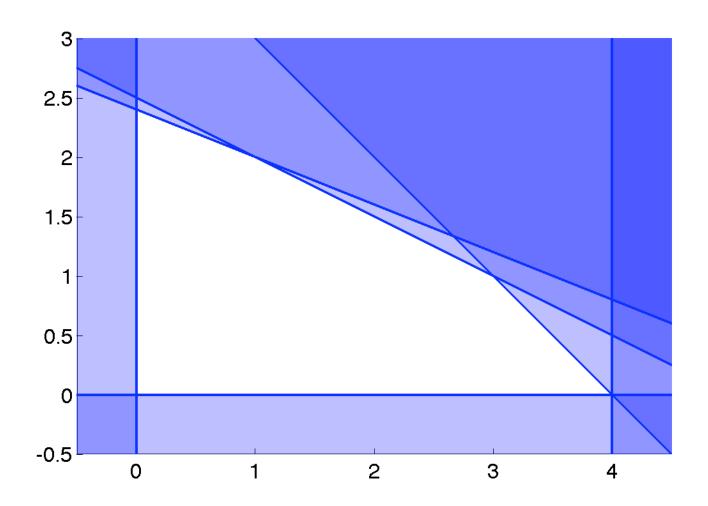
| X          | У          | S | t | u | V | Z | RHS |
|------------|------------|---|---|---|---|---|-----|
| 1          | 1          | 1 | 0 | 0 | 0 | 0 | 4   |
| 2          | 5          | 0 | 1 | 0 | 0 | 0 | 12  |
| 1          | 2          | 0 | 0 | 1 | 0 | 0 | 5   |
| 1          | 0          | 0 | 0 | 0 | 1 | 0 | 4   |
| <b>-</b> 2 | <b>-</b> 3 | 0 | 0 | 0 | 0 | 1 | 0   |



| X    | У | S | t    | u | V | Z | RHS |
|------|---|---|------|---|---|---|-----|
| 0.4  | 1 | 0 | 0.2  |   | 0 | 0 | 2.4 |
| 0.6  | 0 | 1 | -0.2 | 0 | 0 | 0 | 1.6 |
| 0.2  | 0 | 0 | -0.4 | 1 | 0 | 0 | 0.2 |
| 1    | 0 | 0 | 0    | 0 | 1 | 0 | 4   |
| -0.8 | 0 | 0 | 0.6  | 0 | 0 | 1 | 7.2 |

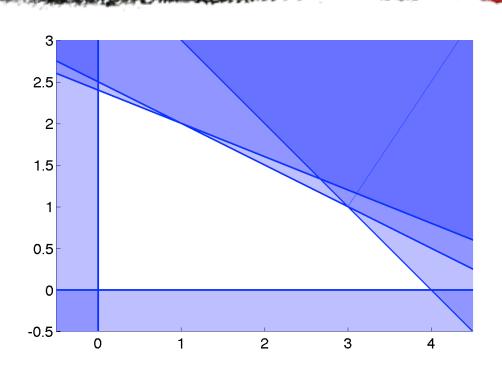


| X | У | S | t  | u          | V | Z | RHS |
|---|---|---|----|------------|---|---|-----|
| 1 | 0 | 0 | -2 |            | 0 | 0 | 1   |
| 0 | 1 | 0 | 1  | -2         | 0 | 0 | 2   |
| 0 | 0 | 1 | 1  | -3         | 0 | 0 | 1   |
| 0 | 0 | 0 | 2  | <b>-</b> 5 | 1 | 0 | 3   |
| 0 | 0 | 0 | -1 | 4          | 0 | 1 | 8   |



| x y s t u v z  | RHS |
|----------------|-----|
| <u> </u>       |     |
| 1 0 2 0 -1 0 0 | 3   |
| 0 1 -1 0 1 0 0 | 1   |
| 0 0 1 1 -3 0 0 | 1   |
| 0 0 -2 0 1 1 0 | 1   |
| 0 0 1 0 1 0 1  | 9   |

#### Initial basis



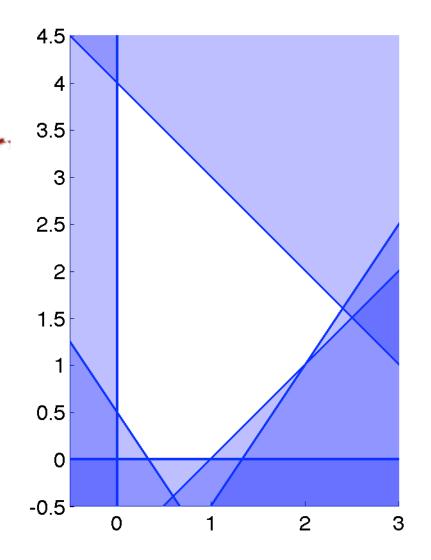
| X | У | u | V | W | RHS |
|---|---|---|---|---|-----|
|   | 1 |   |   |   | 4   |
| 2 | 5 | 0 | 1 | 0 | 12  |
| 1 | 2 | 0 | 0 | 1 | 5   |

- So far, assumed we started w/ feasible basic solution—in fact, it was trivial to find one
- Not always so easy in general

# Big M

$$0 \le x, y, s1...s6$$
  
max x - 2y

| X         | У  | S | lac | cks | 5 | Z | RHS       |
|-----------|----|---|-----|-----|---|---|-----------|
| 1         | 1  | 1 | 0   | 0   | 0 | 0 | 4         |
| 3         | -2 | 0 | 1   | 0   | 0 | 0 | 4         |
| 1         | -1 | 0 | 0   | 1   | 0 | 0 | 1         |
| <u>-3</u> | -2 | 0 | 0   | 0   | 1 | 0 | <u>-1</u> |
| -1        | 2  | 0 | 0   | 0   | 0 | 1 | 0         |



- Can make it easy: variant of slack trick
  - ▶ For each violated constraint, add var w/ coeff -I
  - Penalize in objective

#### Simplex in one slide

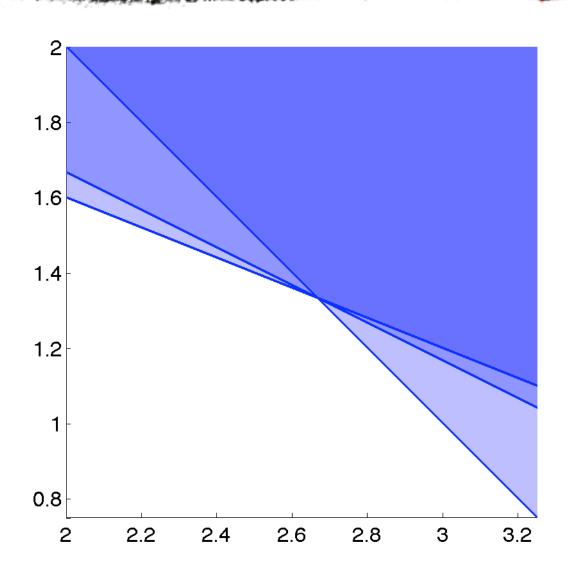
(skipping degeneracy handling)

- Given a nonsingular standard-form max LP
- Start from a feasible basis and its tableau
  - big-M if needed
- Pick non-basic variable w/ coeff in objective ≤ 0
- Pivot it into basis, getting neighboring basis
  - select exiting variable to keep feasibility
- Repeat until all non-basic variables have objective ≥ 0

# Degeneracy

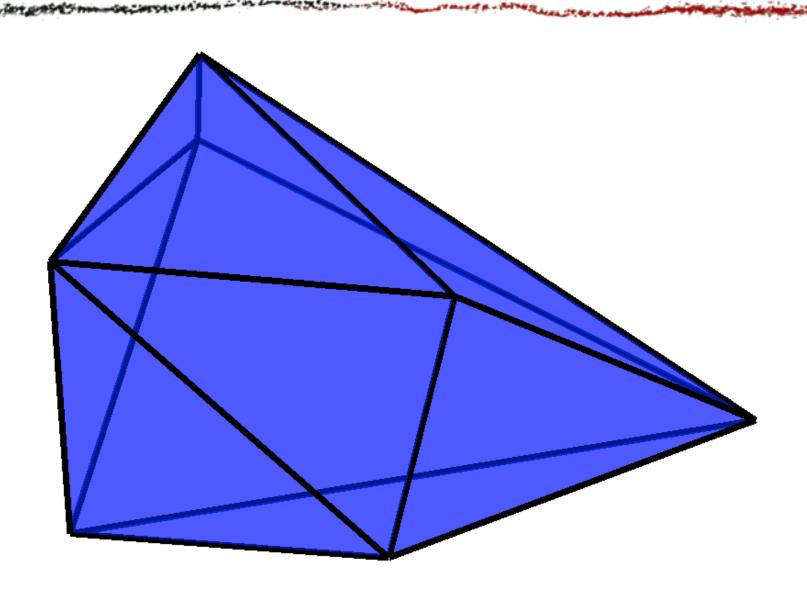
- Not every set of m variables yields a corner
  - some have rank < m (not a basis)</p>
  - some are infeasible
- Can the reverse be true? Can two bases yield the same corner?

# Degeneracy



| <u>X</u> | У | u  | V  | W  | RHS  |
|----------|---|----|----|----|------|
| 1        | 1 | 1  | 0  | 0  | 4    |
| 2        | 5 | 0  | 1  | 0  | 12   |
| 1        | 2 | 0  | 0  | 1  | 16/3 |
|          |   |    |    |    |      |
| 1        | 0 | 0  | -2 | 5  | 8/3  |
| 0        | 1 | 0  | 1  | -2 | 4/3  |
| 0        | 0 | 1  | 1  | -3 | 0    |
|          |   |    |    |    |      |
| 1        | 0 | 2  | 0  | -1 | 8/3  |
| 0        | 1 | -1 | 0  | 1  | 4/3  |
| 0        | 0 | 1  | 1  | -3 | 0    |
|          |   |    |    |    |      |

# Degeneracy in 3D

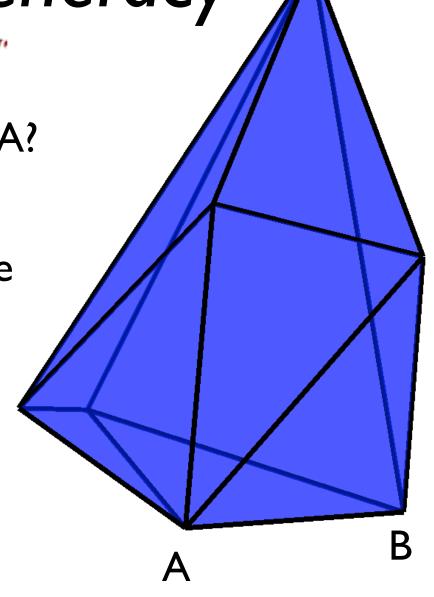


Bases & degeneracy

How many bases for vertex A?

 Are they all neighbors of one another?

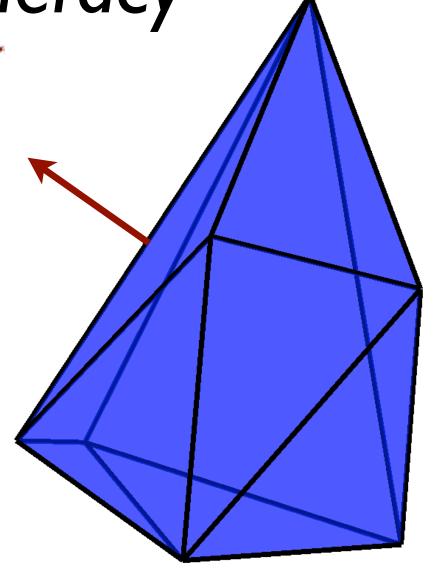
Are they all neighbors of B?



Dual degeneracy

More than m entries in objective row = 0

- so, a nonbasic variable has reduced cost = 0
- objective orthogonal to
   a d-face for d ≥ I



# Handling degeneracy

- Sometimes have to make pivots that don't improve objective
  - stay at same corner (exiting variable was already 0)
  - move to another corner w/ same objective (coeff of entering variable in objective was 0)
- Problem of cycling
  - need an anti-cycling rule (there are many...)
  - e.g.: add tiny random numbers to obj, RHS