
Matrix differential calculus

10-725 Optimization
Geoff Gordon

Ryan Tibshirani

Geoff Gordon—10-725 Optimization—Fall 2012

Review

• Matrix differentials: sol’n to matrix calculus pain
‣ compact way of writing Taylor expansions, or …

‣ definition:

‣ df = a(x; dx) [+ r(dx)]

‣ a(x; .) linear in 2nd arg

‣ r(dx)/||dx|| → 0 as dx → 0

• d(…) is linear: passes thru +, scalar *

• Generalizes Jacobian, Hessian, gradient, velocity

2

Geoff Gordon—10-725 Optimization—Fall 2012

Review

• Chain rule

• Product rule

• Bilinear functions: cross product, Kronecker,
Frobenius, Hadamard, Khatri-Rao, …

• Identities

‣ rules for working with ￮, tr()
‣ trace rotation

• Identification theorems

3

Geoff Gordon—10-725 Optimization—Fall 2012

Finding a maximum
or minimum, or saddle point

43 2 1 0 1 2 31

0.5

0

0.5

1

1.5

2

ID for df(x) scalar x vector x matrix X

scalar f

vector f

matrix F

df = a dx df = aTdx df = tr(ATdX)

df = a dx df = A dx

dF = A dx

Geoff Gordon—10-725 Optimization—Fall 2012

Finding a maximum
or minimum, or saddle point

5

ID for df(x) scalar x vector x matrix X

scalar f

vector f

matrix F

df = a dx df = aTdx df = tr(ATdX)

df = a dx df = A dx

dF = A dx

Geoff Gordon—10-725 Optimization—Fall 2012

And so forth…

• Can’t draw it for X a matrix, tensor, …

• But same principle holds: set coefficient of dX
to 0 to find min, max, or saddle point:
‣ if df = c(A; dX) [+ r(dX)] then

‣ so: max/min/sp iff

‣ for c(.; .) any “product”,

6

Geoff Gordon—10-725 Optimization—Fall 2012

Ex: Infomax ICA

• Training examples xi ∈ ℝd, i = 1:n

• Transformation yi = g(Wxi)

‣W ∈ ℝd!d

‣ g(z) =

• Want:

23

10 5 0 5 1010

5

0

5

10

Wxi

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

yi

10 5 0 5 10
10

5

0

5

10

xi

Geoff Gordon—10-725 Optimization—Fall 2012

Volume rule

8

Geoff Gordon—10-725 Optimization—Fall 2012

Ex: Infomax ICA
• yi = g(Wxi)
‣ dyi =

• Method: maxW !i –ln(P(yi))
‣ where P(yi) =

24

10 5 0 5 1010

5

0

5

10

Wxi

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

yi

10 5 0 5 10
10

5

0

5

10

xi

Geoff Gordon—10-725 Optimization—Fall 2012

Gradient

• L = ∑ ln |det Ji| yi = g(Wxi) dyi = Ji dxi

10

i

Geoff Gordon—10-725 Optimization—Fall 2012

Gradient

11

Ji = diag(ui) W dJi = diag(ui) dW + diag(vi) diag(dW xi) W

dL =

Geoff Gordon—10-725 Optimization—Fall 2012

Natural gradient

• L(W): Rd×d → R dL = tr(GTdW)

• step S = arg maxS M(S) = tr(GTS) – ||SW-1||2 /2
‣ scalar case: M = gs – s2 / 2w2

• M =

• dM =

12

F

Geoff Gordon—10-725 Optimization—Fall 2012

yi

ICA natural gradient

• [W-T + C] WTW =

13

Wxi

start with W0 = I

Geoff Gordon—10-725 Optimization—Fall 2012

yi

ICA natural gradient

• [W-T + C] WTW =

13

Wxi

start with W0 = I

Geoff Gordon—10-725 Optimization—Fall 2012

ICA on natural image patches

14

Geoff Gordon—10-725 Optimization—Fall 2012

ICA on natural image patches

15

Geoff Gordon—10-725 Optimization—Fall 2012

More info
• Minka’s cheat sheet:
‣ http://research.microsoft.com/en-us/um/people/minka/

papers/matrix/

• Magnus & Neudecker. Matrix Differential Calculus.
Wiley, 1999. 2nd ed.
‣ http://www.amazon.com/Differential-Calculus-

Applications-Statistics-Econometrics/dp/047198633X

• Bell & Sejnowski. An information-maximization
approach to blind separation and blind
deconvolution. Neural Computation, v7, 1995.

16

http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
http://www.amazon.com/Differential-Calculus-Applications-Statistics-Econometrics/dp/047198633X
http://www.amazon.com/Differential-Calculus-Applications-Statistics-Econometrics/dp/047198633X
http://www.amazon.com/Differential-Calculus-Applications-Statistics-Econometrics/dp/047198633X
http://www.amazon.com/Differential-Calculus-Applications-Statistics-Econometrics/dp/047198633X

Newton’s method

10-725 Optimization
Geoff Gordon

Ryan Tibshirani

Geoff Gordon—10-725 Optimization—Fall 2012

Nonlinear equations

• x ∈ Rd f: Rd→Rd, diff ’ble

‣ solve:

• Taylor:
‣ J:

• Newton:

18

0 1 2
1

0.5

0

0.5

1

1.5

Geoff Gordon—10-725 Optimization—Fall 2012

Error analysis

19

Geoff Gordon—10-725 Optimization—Fall 2012

dx = x*(1-x*phi)

20

0: 0.7500000000000000
1: 0.5898558813281841
2: 0.6167492604787597
3: 0.6180313181415453
4: 0.6180339887383547
5: 0.6180339887498948
6: 0.6180339887498949
7: 0.6180339887498948
8: 0.6180339887498949

*: 0.6180339887498948

Geoff Gordon—10-725 Optimization—Fall 2012

Bad initialization

21

1.3000000000000000
-0.1344774409873226
-0.2982157033270080
-0.7403273854022190
-2.3674743431148597

-13.8039236412225819
-335.9214859516196157

-183256.0483360671496484
-54338444778.1145248413085938

Geoff Gordon—10-725 Optimization—Fall 2012

Minimization

• x ∈ Rd f: Rd→R, twice diff ’ble

‣ find:

• Newton:

22

Geoff Gordon—10-725 Optimization—Fall 2012

Descent

• Newton step: d = –(f ’’(x))-1 f ’(x)

• Gradient step: –g = –f’(x)

• Taylor: df =

• Let t > 0, set dx =
‣ df =

• So:

23

Geoff Gordon—10-725 Optimization—Fall 2012

Steepest descent

24

9.5 Newton’s method 485

PSfrag replacements

x

x + ∆xnt
x + ∆xnsd

Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x!.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x!, a very good choice
is P = ∇2f(x!). When x is near x!, we have ∇2f(x) ≈ ∇2f(x!), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x!) = 0 near x we obtain

∇f(x + v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x! (so the optimality conditions almost hold),
the update x + ∆xnt should be a very good approximation of x!.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x! of the minimization problem is characterized by f ′(x!) = 0, i.e., it is

g = f ’(x)
H = f’’(x)

||d||H =

Geoff Gordon—10-725 Optimization—Fall 2012

Newton w/ line search

• Pick x1

• For k = 1, 2, …
‣ gk = f ’(xk); Hk = f ’’(xk)

‣ dk = –Hk \ gk

‣ tk = 1

‣ while f(xk + tk dk) > f(xk) + t gk
Tdk / 2

‣ tk = β tk

‣ xk+1 = xk + tk dk

25

gradient & Hessian

Newton direction

backtracking line search

step

β<1

Geoff Gordon—10-725 Optimization—Fall 2012

Properties of damped Newton

• Affine invariant: suppose g(x) = f(Ax+b)
‣ x1, x2, … from Newton on g()

‣ y1, y2, … from Newton on f()

‣ If y1 = Ax1 + b, then:

• Convergent:
‣ if f bounded below, f(xk) converges

‣ if f strictly convex, bounded level sets, xk converges

‣ typically quadratic rate in neighborhood of x*

26

Geoff Gordon—10-725 Optimization—Fall 2012

Equality constraints

• min f(x) s.t. h(x) = 0

27

2 0 22

1

0

1

2

Geoff Gordon—10-725 Optimization—Fall 2012

Optimality w/ equality

• min f(x) s.t. h(x) = 0

‣ f: Rd → R, h: Rd → Rk (k ≤ d)

‣ g: Rd → Rd (gradient of f)

• Useful special case: min f(x) s.t. Ax = 0

28

Geoff Gordon—10-725 Optimization—Fall 2012

Picture

29

max c�




x
y
z



 s.t.

x2 + y2 + z2 = 1

a�x = b

Geoff Gordon—10-725 Optimization—Fall 2012

Optimality w/ equality
• min f(x) s.t. h(x) = 0

‣ f: Rd → R, h: Rd → Rk (k ≤ d)

‣ g: Rd → Rd (gradient of f)

• Now suppose:
‣ dg = dh =

• Optimality:

30

Geoff Gordon—10-725 Optimization—Fall 2012

Example: bundle adjustment

• Latent:

‣ Robot positions xt, θt

‣ Landmark positions yk

• Observed: odometry,
landmark vectors

‣ vt = Rθt[xt+1–xt] + noise

‣ wt = [θt+1–θt + noise]π

‣ dkt = Rθt[yk–xt] + noise

31

2 0 25

4

3

2

1

0

1

2

3

O = {observed kt pairs}

Geoff Gordon—10-725 Optimization—Fall 2012

Example: bundle adjustment

• Latent:

‣ Robot positions xt, θt

‣ Landmark positions yk

• Observed: odometry,
landmark vectors

‣ vt = Rθt[xt+1–xt] + noise

‣ wt = [θt+1–θt + noise]π

‣ dkt = Rθt[yk–xt] + noise

32

Geoff Gordon—10-725 Optimization—Fall 2012

Bundle adjustment

33

min
xt,ut,yk

�
t
�vt −R(ut)[xt+1 − xt]�2 +

�
t
�Rwtut − ut+1�2 +

�
(t,k)∈O

�dk,t −R(ut)[yk − xt]�2

s.t. u�
t ut = 1

Geoff Gordon—10-725 Optimization—Fall 2012

Ex: MLE in exponential family

34

L = − ln
�

k

P (xk | θ)

P (xk | θ) =
g(θ) =

Geoff Gordon—10-725 Optimization—Fall 2012

MLE Newton interpretation

35

Geoff Gordon—10-725 Optimization—Fall 2012

Comparison
of methods for minimizing a convex function

36

Newton FISTA (sub)grad stoch. (sub)grad.

convergence

cost/iter

smoothness

Geoff Gordon—10-725 Optimization—Fall 2012

Variations
• Trust region
‣ [H(x) + tI]dx = –g(x)

‣ [H(x) + tD]dx = –g(x)

• Quasi-Newton
‣ use only gradients, but build estimate of Hessian

‣ in Rd, d gradient estimates at “nearby” points
determine approx. Hessian (think finite differences)

‣ can often get “good enough” estimate w/ fewer—
can even forget old info to save memory (L-BFGS)

37

Geoff Gordon—10-725 Optimization—Fall 2012

Variations: Gauss-Newton

38

L = min
θ

�

k

1

2
�yk − f(xk, θ)�2

Geoff Gordon—10-725 Optimization—Fall 2012

Variations: Fisher scoring

• Recall Newton in exponential family

• Can use this formula in place of Newton, even
if not an exponential family
‣ descent direction, even w/ no regularization

‣ “Hessian” is independent of data

‣ often a wider radius of convergence than Newton

‣ can be superlinearly convergent

39

E[xx� | θ]dθ = x̄− E[x | θ]

