Matrix differential calculus

10-725 Optimization Geoff Gordon Ryan Tibshirani

Review

- Matrix differentials: sol'n to matrix calculus pain
 - compact way of writing Taylor expansions, or ...
 - definition:
 - $\bullet df = a(x; dx) [+ r(dx)]$
 - ▶ a(x; .) linear in 2nd arg
 - $r(dx)/||dx|| \rightarrow 0$ as $dx \rightarrow 0$
- d(...) is linear: passes thru +, scalar *
- Generalizes Jacobian, Hessian, gradient, velocity

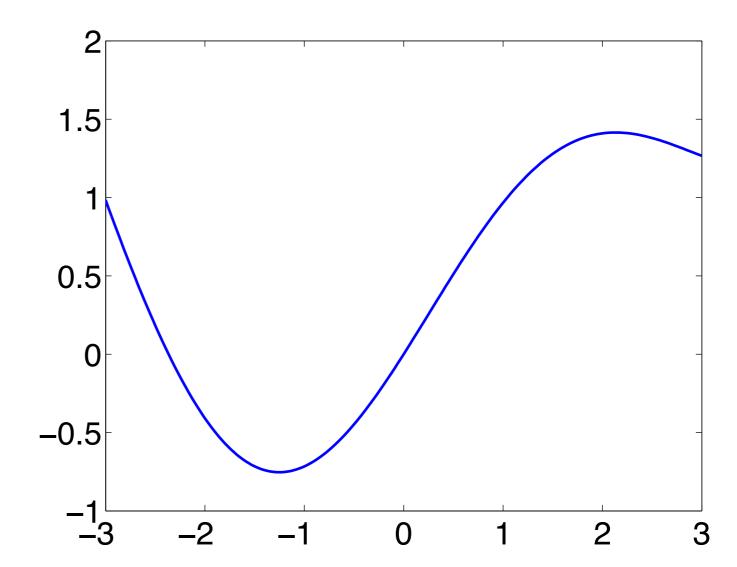
Review

- Chain rule
- Product rule
- Bilinear functions: cross product, Kronecker, Frobenius, Hadamard, Khatri-Rao, ...
- Identities
 - ▶ rules for working with ○, tr()
 - trace rotation
- Identification theorems

Finding a maximum

or minimum, or saddle point

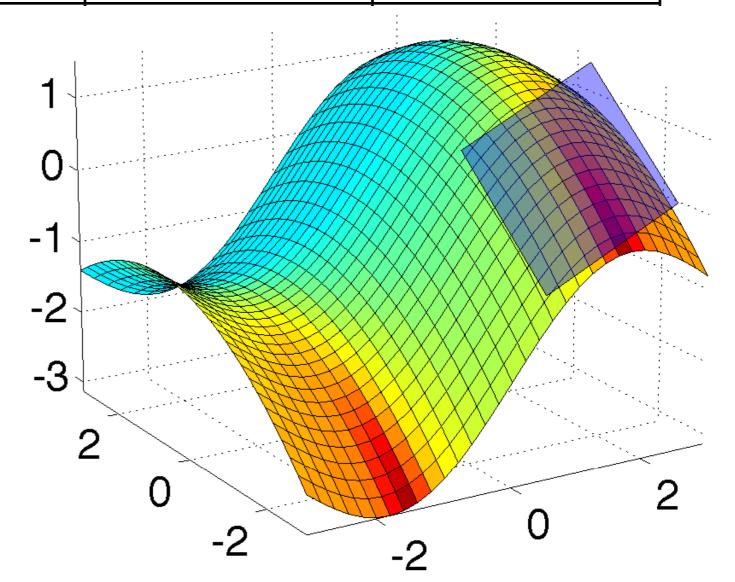
ID for df(x)	scalar x	vector X	matrix X
scalar f	df = a dx	$df = \boldsymbol{a}^{T} d\mathbf{x}$	$df = tr(A^{T}dX)$



Finding a maximum

or minimum, or saddle point

ID for df(x)	scalar x	vector X	matrix X
scalar f	df = a dx	$df = \boldsymbol{a}^{T} d\mathbf{x}$	$df = tr(A^T dX)$



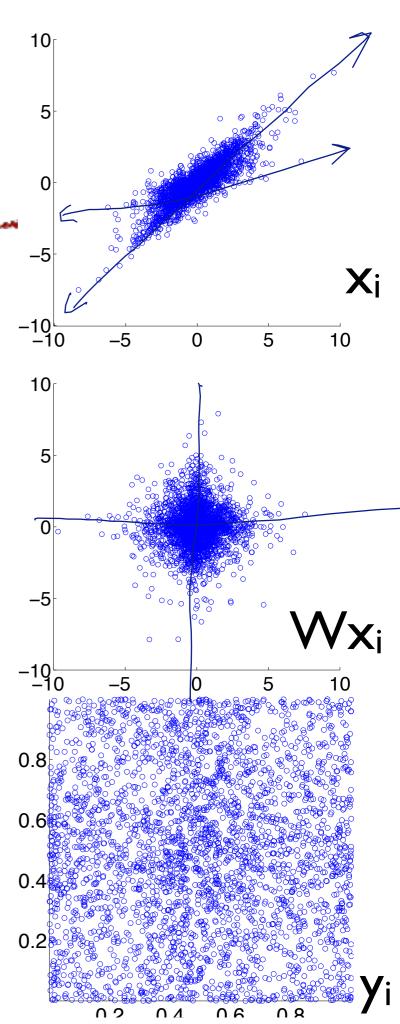
And so forth...

- Can't draw it for X a matrix, tensor, ...
- But same principle holds: set coefficient of dX to 0 to find min, max, or saddle point:
 - if df = c(A; dX) [+ r(dX)] then

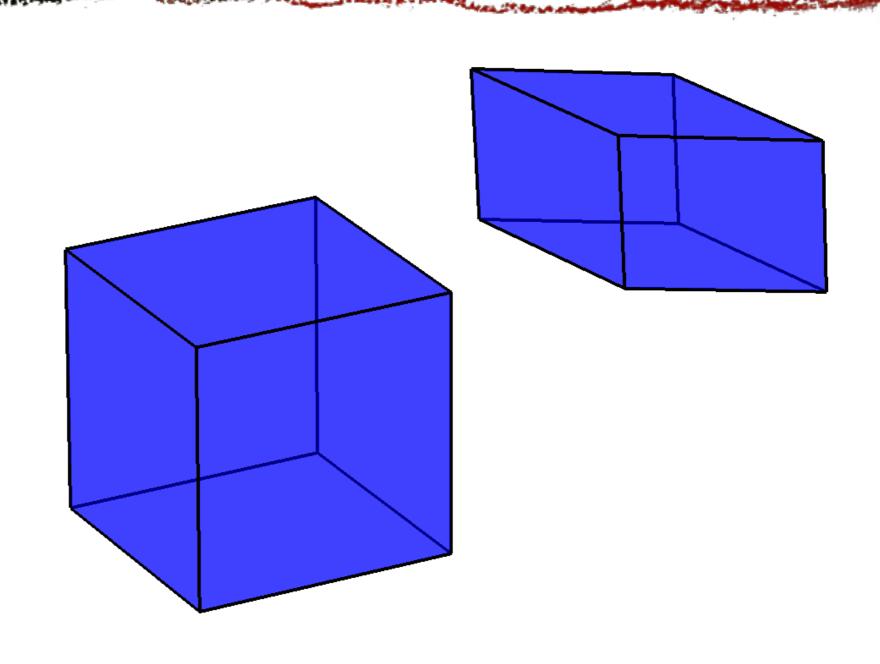
- so: max/min/sp iff
- for c(.;.) any "product",

Ex: Infomax ICA

- Training examples $x_i \in \mathbb{R}^d$, i = 1:n
- Transformation $y_i = g(Wx_i)$
 - ▶ W ∈ Rd×d parameter
 - ▶ g(z) = scalar for componentwise
- Want: independent components

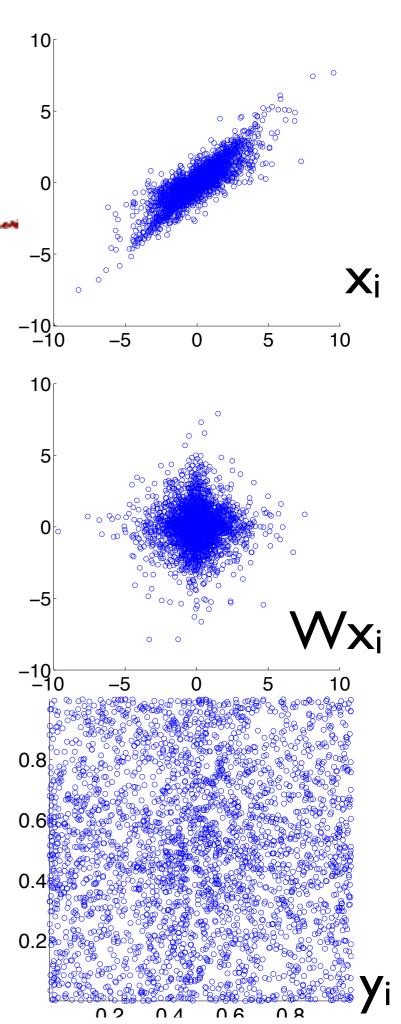


Volume rule



Ex: Infomax ICA

- $y_i = g(Wx_i)$ • $dy_i = J(x_i, W)dx_i = J_i dx_i$ est. of $P(y_i)$
- Method: $\max_{W} \sum_{i} -ln(P(y_i))$
 - where $P(y_i) = P(x_i) / (det J(x_i, w))$ Max $\sum_{i} (ln | det J(x_i, w)| ln P(x_i))$



Gradient

•
$$L = \sum_{i} ln |det J_i|$$
 $y_i = g(Wx_i)$ $dy_i = J_i dx_i$

Gradient

```
J_i = diag(u_i) \, W \quad dJ_i = diag(u_i) \, dW + diag(v_i) \, diag(dW \, x_i) \, W dL =
```

Natural gradient

- $L(W): R^{d\times d} \rightarrow R$ $dL = tr(G^TdW)$
- step S = arg max_S M(S) = tr(G^TS) $||SW^{-1}||_F^2/2$ • scalar case: M = gs - s²/ 2w²
- M =
- dM =

ICA natural gradient

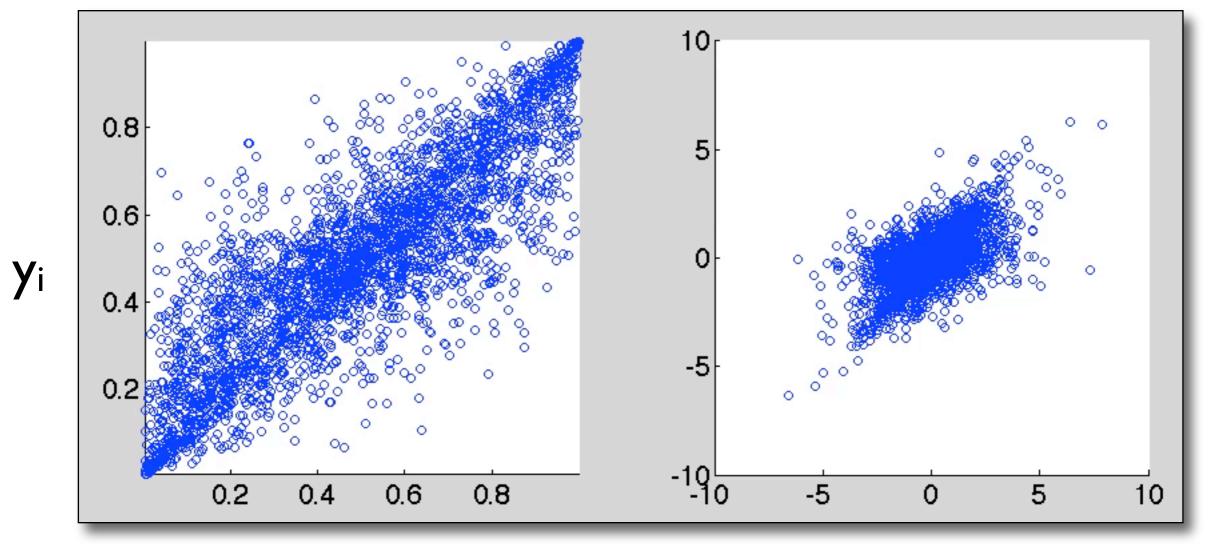
•
$$[W^{-T} + C]W^{T}W =$$

$$W_{X_i}$$

start with $W_0 = I$

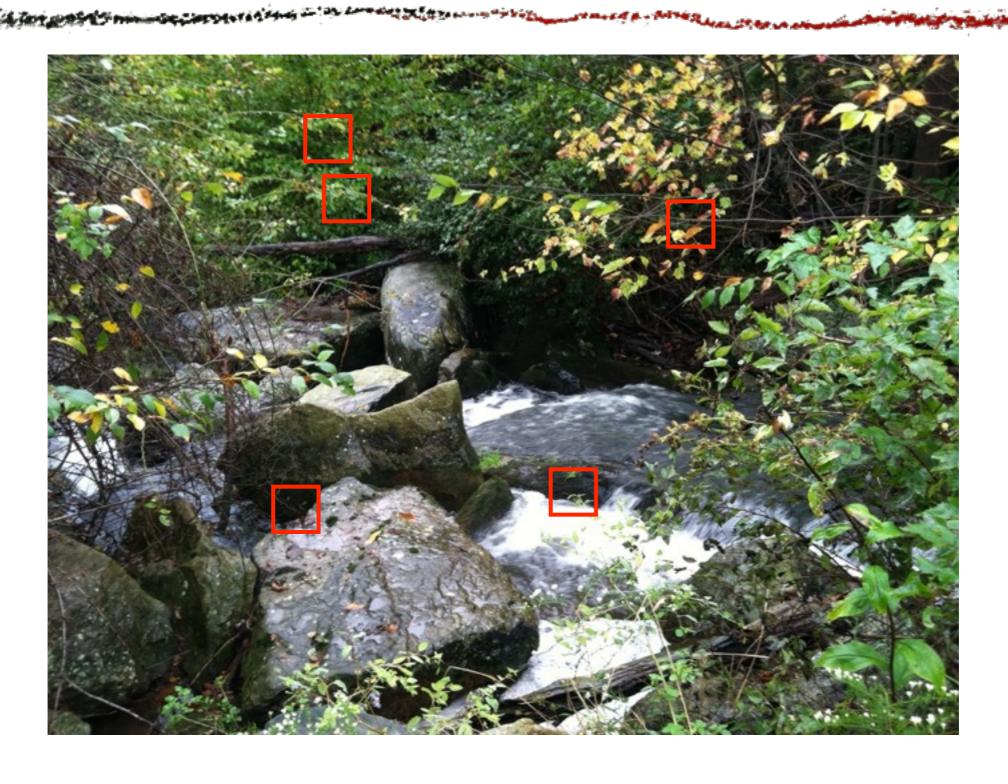
ICA natural gradient

• $[W^{-T} + C]W^{T}W =$

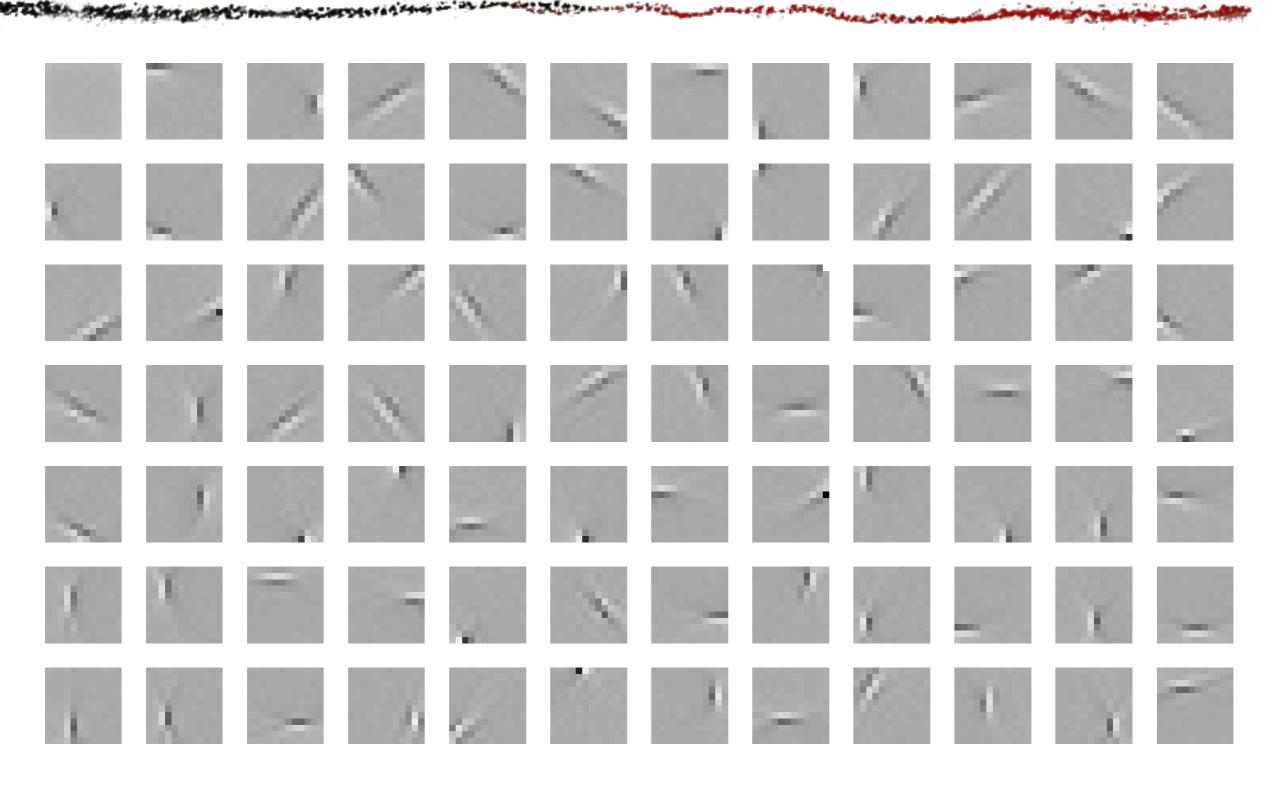


start with $W_0 = I$

ICA on natural image patches



ICA on natural image patches



More info

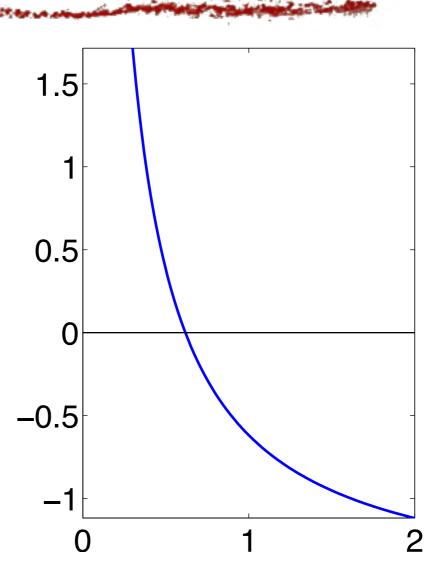
- Minka's cheat sheet:
 - http://research.microsoft.com/en-us/um/people/minka/ papers/matrix/
- Magnus & Neudecker. Matrix Differential Calculus.
 Wiley, 1999. 2nd ed.
 - http://www.amazon.com/Differential-Calculus-Applications-Statistics-Econometrics/dp/047198633X
- Bell & Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, v7, 1995.

Newton's method

10-725 Optimization Geoff Gordon Ryan Tibshirani

Nonlinear equations

- $x \in R^d$ f: $R^d \rightarrow R^d$, diff'ble
 - > solve:
- Taylor:
 - **)**]:
- Newton:



Error analysis

dx = x*(1-x*phi)

```
0: 0.7500000000000000
1: 0.5898558813281841
2: 0.6167492604787597
3: 0.6180313181415453
4: 0.6180339887383547
5: 0.6180339887498948
6: 0.6180339887498949
7: 0.6180339887498948
8: 0.6180339887498949
```

***:** 0.6180339887498948

Bad initialization

```
1.3000000000000000
          -0.1344774409873226
          -0.2982157033270080
          -0.7403273854022190
          -2.3674743431148597
         -13.8039236412225819
        -335.9214859516196157
     -183256.0483360671496484
-54338444778.1145248413085938
```

Minimization

- $x \in R^d$ f: $R^d \rightarrow R$, twice diff'ble
 - ▶ find:
- Newton:

Descent

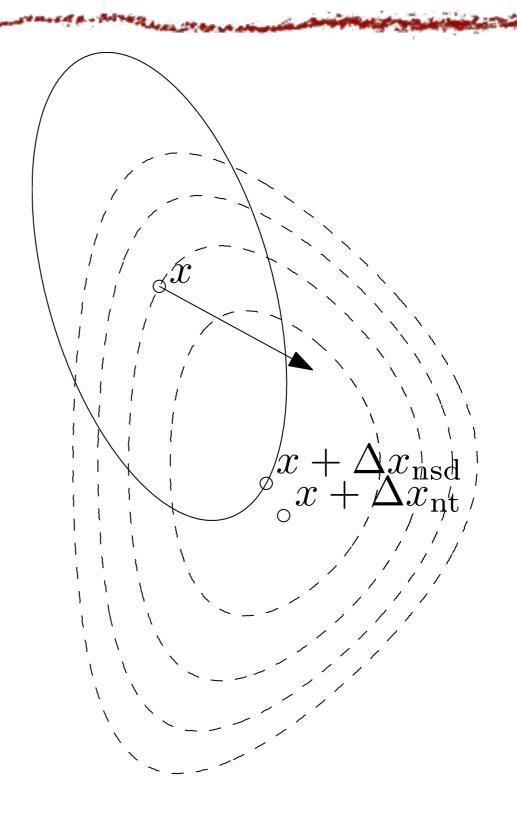
- Newton step: $d = -(f''(x))^{-1} f'(x)$
- Gradient step: -g = -f'(x)
- Taylor: df =
- Let t > 0, set dx =
 - ▶ df =
- So:

Steepest descent

$$g = f'(x)$$

 $H = f''(x)$

$$||d||_{H} =$$



Newton w/ line search

- Pick x_I
- For k = 1, 2, ...

•
$$g_k = f'(x_k); H_k = f''(x_k)$$

$$\rightarrow d_k = -H_k \setminus g_k$$

$$t_k = 1$$

gradient & Hessian

Newton direction

backtracking line search

• while
$$f(x_k + t_k d_k) > f(x_k) + t g_k^T d_k / 2$$

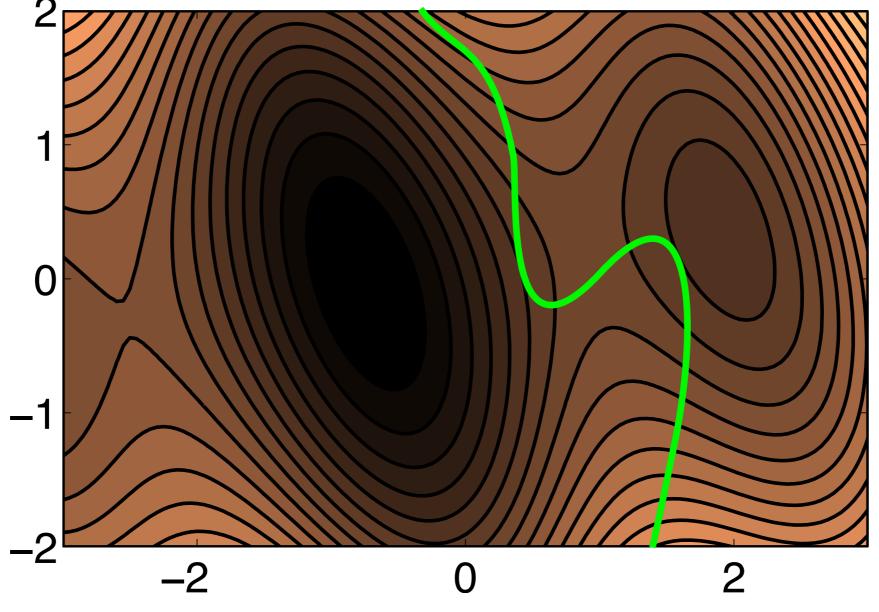
$$t_k = \beta t_k$$

Properties of damped Newton

- Affine invariant: suppose g(x) = f(Ax+b)
 - \rightarrow x₁, x₂, ... from Newton on g()
 - \rightarrow y₁, y₂, ... from Newton on f()
 - If $y_1 = Ax_1 + b$, then:
- Convergent:
 - \blacktriangleright if f bounded below, $f(x_k)$ converges
 - ▶ if f strictly convex, bounded level sets, x_k converges
 - typically quadratic rate in neighborhood of x*

Equality constraints

• min f(x) s.t. h(x) = 0



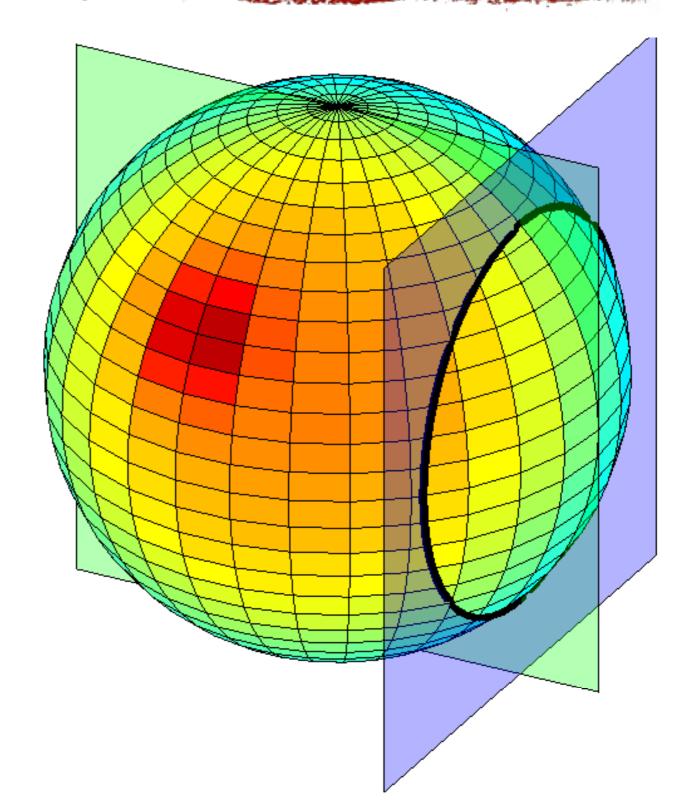
Optimality w/ equality

- min f(x) s.t. h(x) = 0
 ▶ f: R^d → R, h: R^d → R^k (k ≤ d)
 ▶ g: R^d → R^d (gradient of f)
- Useful special case: min f(x) s.t. Ax = 0

Picture

$$\max c^{ op} \left[egin{array}{c} x \ y \ z \end{array} \right] ext{ s.t.}$$

$$x^2 + y^2 + z^2 = 1$$
$$a^{\mathsf{T}}x = b$$



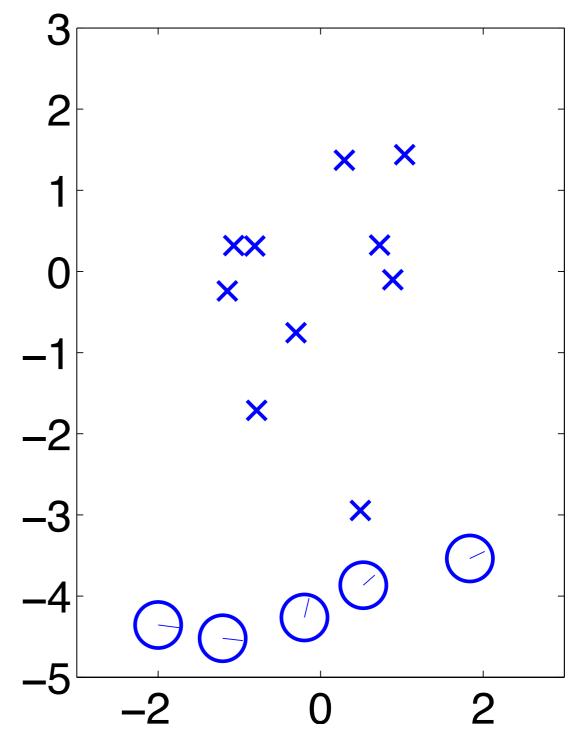
Optimality w/ equality

- min f(x) s.t. h(x) = 0
 - f: $R^d \rightarrow R$, h: $R^d \rightarrow R^k$ $(k \le d)$
 - g: $R^d \rightarrow R^d$ (gradient of f)
- Now suppose:
 - ▶ dg =
 dh =
- Optimality:

Example: bundle adjustment

Latent:

- Robot positions x_t , θ_t
- ▶ Landmark positions y_k
- Observed: odometry, landmark vectors
 - $v_t = R_{\theta t}[x_{t+1} x_t] + noise$
 - $w_t = [\theta_{t+1} \theta_t + noise]_{\pi}$
 - ► $d_{kt} = R_{\theta t}[y_k x_t] + noise$ $O = \{observed \ kt \ pairs\}$



Example: bundle adjustment

• Latent:

- Robot positions x_t , θ_t
- Landmark positions y_k
- Observed: odometry, landmark vectors
 - $\mathbf{v}_{t} = \mathbf{R}_{\theta t}[\mathbf{x}_{t+1} \mathbf{x}_{t}] + noise$
 - $w_t = [\theta_{t+1} \theta_t + noise]_{\pi}$
 - $d_{kt} = R_{\theta t}[y_k x_t] + noise$

Bundle adjustment

$$\min_{x_t, u_t, y_k} \sum_{t} \|v_t - R(u_t)[x_{t+1} - x_t]\|^2 + \sum_{t} \|R_{w_t} u_t - u_{t+1}\|^2 + \sum_{t, u_t, y_k} \sum_{t} \|d_{k,t} - R(u_t)[y_k - x_t]\|^2$$
s.t. $u_t^\top u_t = 1$

Ex: MLE in exponential family

$$L = -\ln \prod_{k} P(x_k \mid \theta)$$

$$P(x_k \mid \theta) =$$
$$g(\theta) =$$

MLE Newton interpretation

Comparison

of methods for minimizing a convex function

Newton

FISTA (sub)grad stoch. (sub)grad.

convergence

cost/iter

smoothness

Variations

Trust region

- [H(x) + tl]dx = -g(x)
- (H(x) + tD]dx = -g(x)
- Quasi-Newton
 - use only gradients, but build estimate of Hessian
 - ▶ in R^d, d gradient estimates at "nearby" points determine approx. Hessian (think finite differences)
 - can often get "good enough" estimate w/ fewer can even forget old info to save memory (L-BFGS)

Variations: Gauss-Newton

$$L = \min_{\theta} \sum_{k} \frac{1}{2} ||y_k - f(x_k, \theta)||^2$$

Variations: Fisher scoring

Recall Newton in exponential family

$$E[xx^{\top} \mid \theta]d\theta = \bar{x} - E[x \mid \theta]$$

- Can use this formula in place of Newton, even if not an exponential family
 - descent direction, even w/ no regularization
 - "Hessian" is independent of data
 - often a wider radius of convergence than Newton
 - can be superlinearly convergent