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Review

• Matrix differentials: sol’n to matrix calculus pain
‣ compact way of writing Taylor expansions, or …

‣ definition:

‣ df = a(x; dx) [+ r(dx)]

‣ a(x; .) linear in 2nd arg

‣ r(dx)/||dx|| → 0 as dx → 0

• d(…) is linear: passes thru +, scalar *

• Generalizes Jacobian, Hessian, gradient, velocity
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Review

• Chain rule

• Product rule

• Bilinear functions: cross product, Kronecker, 
Frobenius, Hadamard, Khatri-Rao, …

• Identities

‣ rules for working with ￮, tr()
‣ trace rotation

• Identification theorems
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Finding a maximum
or minimum, or saddle point
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ID for df(x) scalar x vector x matrix X

scalar f

vector f

matrix F

df = a dx df = aTdx df = tr(ATdX)

df = a dx df = A dx

dF = A dx
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Finding a maximum
or minimum, or saddle point
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And so forth…

• Can’t draw it for X a matrix, tensor, …

• But same principle holds: set coefficient of dX 
to 0 to find min, max, or saddle point:
‣ if df = c(A; dX) [+ r(dX)] then

‣ so: max/min/sp iff

‣ for c(.; .) any “product”, 
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Ex: Infomax ICA

• Training examples xi ∈ ℝd, i = 1:n

• Transformation yi = g(Wxi)

‣W ∈ ℝd!d  

‣ g(z) = 

• Want:
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Volume rule
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Ex: Infomax ICA
• yi = g(Wxi)
‣ dyi = 

• Method: maxW !i –ln(P(yi))
‣ where P(yi) = 
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Gradient

• L = ∑ ln |det Ji|     yi = g(Wxi)     dyi = Ji dxi
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Gradient
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Ji = diag(ui) W dJi = diag(ui) dW + diag(vi) diag(dW xi) W

dL =
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Natural gradient

• L(W): Rd×d → R    dL = tr(GTdW)

• step S = arg maxS M(S) = tr(GTS) – ||SW-1||2 /2
‣ scalar case:  M = gs – s2 / 2w2

• M = 

• dM = 
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yi

ICA natural gradient

• [W-T + C] WTW = 
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Wxi

start with W0 = I
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yi

ICA natural gradient

• [W-T + C] WTW = 
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ICA on natural image patches
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ICA on natural image patches
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More info
• Minka’s cheat sheet:
‣ http://research.microsoft.com/en-us/um/people/minka/

papers/matrix/

• Magnus & Neudecker.  Matrix Differential Calculus.  
Wiley, 1999.  2nd ed.
‣ http://www.amazon.com/Differential-Calculus-

Applications-Statistics-Econometrics/dp/047198633X

• Bell & Sejnowski.  An information-maximization 
approach to blind separation and blind 
deconvolution.  Neural Computation, v7, 1995.
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Nonlinear equations

• x ∈ Rd     f: Rd→Rd, diff ’ble

‣ solve: 

• Taylor:
‣ J: 

• Newton: 
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Error analysis
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dx = x*(1-x*phi)
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0: 0.7500000000000000 
1: 0.5898558813281841
2: 0.6167492604787597
3: 0.6180313181415453
4: 0.6180339887383547
5: 0.6180339887498948
6: 0.6180339887498949
7: 0.6180339887498948
8: 0.6180339887498949

*: 0.6180339887498948
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Bad initialization
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Minimization

• x ∈ Rd     f: Rd→R, twice diff ’ble

‣ find: 

• Newton: 
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Descent

• Newton step: d = –(f ’’(x))-1 f ’(x)

• Gradient step: –g = –f’(x)

• Taylor: df =

• Let t > 0, set dx = 
‣ df = 

• So:
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Steepest descent
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9.5 Newton’s method 485

PSfrag replacements

x

x + ∆xnt
x + ∆xnsd

Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x!.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x!, a very good choice
is P = ∇2f(x!). When x is near x!, we have ∇2f(x) ≈ ∇2f(x!), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x!) = 0 near x we obtain

∇f(x + v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x! (so the optimality conditions almost hold),
the update x + ∆xnt should be a very good approximation of x!.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x! of the minimization problem is characterized by f ′(x!) = 0, i.e., it is

g = f ’(x)
H = f’’(x)

||d||H = 
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Newton w/ line search

• Pick x1

• For k = 1, 2, …
‣ gk = f ’(xk); Hk = f ’’(xk)

‣ dk = –Hk \ gk

‣ tk = 1

‣ while f(xk + tk dk) > f(xk) + t gk
Tdk / 2

‣ tk = β tk

‣ xk+1 = xk + tk dk

25

gradient & Hessian

Newton direction

backtracking line search

step

β<1



Geoff Gordon—10-725 Optimization—Fall 2012

Properties of damped Newton

• Affine invariant: suppose g(x) = f(Ax+b)
‣ x1, x2, … from Newton on g()

‣ y1, y2, … from Newton on f()

‣ If y1 = Ax1 + b, then:

• Convergent: 
‣ if f bounded below, f(xk) converges

‣ if f strictly convex, bounded level sets, xk converges

‣ typically quadratic rate in neighborhood of x*
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Equality constraints

• min f(x) s.t. h(x) = 0
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Optimality w/ equality

• min f(x) s.t. h(x) = 0

‣ f: Rd → R, h: Rd → Rk    (k ≤ d)

‣ g: Rd → Rd                   (gradient of f)

• Useful special case: min f(x) s.t.  Ax = 0
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Picture

29
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Optimality w/ equality
• min f(x) s.t. h(x) = 0

‣ f: Rd → R, h: Rd → Rk    (k ≤ d)

‣ g: Rd → Rd                   (gradient of f)

• Now suppose:
‣ dg =                        dh =

• Optimality: 
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Example: bundle adjustment

• Latent:

‣ Robot positions xt, θt

‣ Landmark positions yk

• Observed: odometry, 
landmark vectors

‣ vt = Rθt[xt+1–xt] + noise

‣ wt = [θt+1–θt + noise]π 

‣ dkt = Rθt[yk–xt] + noise
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Example: bundle adjustment

• Latent:

‣ Robot positions xt, θt

‣ Landmark positions yk

• Observed: odometry, 
landmark vectors

‣ vt = Rθt[xt+1–xt] + noise

‣ wt = [θt+1–θt + noise]π

‣ dkt = Rθt[yk–xt] + noise
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Bundle adjustment

33

min
xt,ut,yk

�
t
�vt −R(ut)[xt+1 − xt]�2 +

�
t
�Rwtut − ut+1�2 +

�
(t,k)∈O

�dk,t −R(ut)[yk − xt]�2

s.t. u�
t ut = 1
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Ex: MLE in exponential family
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L = − ln
�

k

P (xk | θ)

P (xk | θ) =
g(θ) =



Geoff Gordon—10-725 Optimization—Fall 2012

MLE Newton interpretation
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Comparison
of methods for minimizing a convex function
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Newton       FISTA      (sub)grad    stoch. (sub)grad.

convergence
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Variations
• Trust region
‣ [H(x) + tI]dx = –g(x)

‣ [H(x) + tD]dx = –g(x)

• Quasi-Newton
‣ use only gradients, but build estimate of Hessian

‣ in Rd, d gradient estimates at “nearby” points 
determine approx. Hessian (think finite differences)

‣ can often get “good enough” estimate w/ fewer—
can even forget old info to save memory (L-BFGS)
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Variations: Gauss-Newton
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L = min
θ

�
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�yk − f(xk, θ)�2
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Variations: Fisher scoring

• Recall Newton in exponential family

• Can use this formula in place of Newton, even 
if not an exponential family
‣ descent direction, even w/ no regularization

‣ “Hessian” is independent of data

‣ often a wider radius of convergence than Newton

‣ can be superlinearly convergent
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E[xx� | θ]dθ = x̄− E[x | θ]


