
Optimization for well-behaved problems

For statistical learning problems,“well-behaved” means:

• signal to noise ratio is decently high

• correlations between predictor variables are under control

• number of predictors p can be larger than number of
observations n, but not absurdly so

For well-behaved learning problems, people have observed that
gradient or generalized gradient descent can converge extremely
quickly (much more so than predicted by O(1/k) rate)

Largely unexplained by theory, topic of current research. E.g., very
recent work4 shows that for some well-behaved problems, w.h.p.:

�x(k) − x
��2 ≤ c

k�x(0) − x
��2 + o(�x� − x

true�2)

4Agarwal et al. (2012), Fast global convergence of gradient methods for
high-dimensional statistical recovery
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Administrivia

• HW2 out as of this past Tuesday—due 10/9

• Scribing
‣ Scribes 1–6 ready soon; handling errata

‣ missing days: 11/6, 12/4, and 12/6

• Projects:
‣ you should expect to be contacted by TA mentor 

in next weeks

‣ project milestone: 10/30
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Matrix calculus pain

• Take derivatives of fns involving matrices:
‣ write as huge multiple summations w/ lots of terms

‣ take derivative as usual, introducing more terms

‣ case statements for i = j vs. i ! j

‣ try to recognize that output is equivalent to some 
human-readable form

‣ hope for no indexing errors…

• Is there a better way?
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Differentials

• Assume f sufficiently “nice”

• Taylor: f(y) = f(x) + f ’(x) (y–x) + r(y–x)

‣ with r(y–x) / |y–x| → 0 as y → x

• Notation:
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Definition

• Write

‣ dx = y – x          ‣ df = f(y) – f(x)

• Suppose
‣ df = 

‣ with 

‣ and

• Then:
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Matrix differentials

• For matrix X or matrix-valued function F(X):
‣ dX =

‣ dF = 

‣ where

‣ and

• Examples:
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Working with differentials
• Linearity:
‣ d(f(x) + g(x)) =

‣ d(k f(x)) =

• If g linear, dg(f(x)) = g(df(x)); for example
‣ reshape(A, [m n k …])

‣ vec(A) = A(:) = reshape(A, [], 1)

‣ tr(A) = 

‣ AT
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Reshape

9

>> A = reshape(1:24, [2 3 4])

A(:,:,1) =
     1     3     5
     2     4     6

A(:,:,2) =
     7     9    11
     8    10    12

A(:,:,3) =
    13    15    17
    14    16    18

A(:,:,4) =
    19    21    23
    20    22    24

>> B = reshape(A, [4 3 2])

B(:,:,1) =
     1     5     9
     2     6    10
     3     7    11
     4     8    12

B(:,:,2) =
    13    17    21
    14    18    22
    15    19    23
    16    20    24
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Working with differentials

• Chain rule: L(x) = f(g(x))
‣ want:

‣ have:
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Working with differentials

• Product rule: L(x) = c(f(x), g(x))
‣ where c is bilinear = linear in each argument 

(with other argument fixed)

‣ e.g., L(x) = f(x)g(x): f, g scalars, vectors, or matrices
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Lots of products
• Cross product: d(a " b) =

• Hadamard product A  B = A .* B

‣ (A  B)ij = 

‣ d(A  B) =

• Kronecker product d(A ⊗ B) = 

• Frobenius product A:B =

• Khatri-Rao product: d(A*B) = 
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Kronecker product

13

>> A = reshape(1:6, 2, 3)

A =

     1     3     5
     2     4     6

>> B = 2*ones(2)

B =

     2     2
     2     2

>> kron(A, B)

ans =

     2     2     6     6    10    10
     2     2     6     6    10    10
     4     4     8     8    12    12
     4     4     8     8    12    12

>> kron(B, A)

ans =

     2     6    10     2     6    10
     4     8    12     4     8    12
     2     6    10     2     6    10
     4     8    12     4     8    12
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Hadamard product

• a, b vectors

‣ a  b = 

‣ diag(a) diag(b) = 

‣ tr(diag(a) diag(b)) =

‣ tr(diag(b)) = 
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Some examples

• L = (Y–XW)T(Y–XW): differential wrt W
‣ dL = 
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Some examples

• L =                          dL = 

• L = 
‣ dL =
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Trace

• tr(A) = # Aii

‣ d tr(f(x)) =

‣ tr(x) = 

‣ tr(XT) =

• Frobenius product:
‣ A:B =
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Trace rotation

• tr(AB) = 

• tr(ABC) = 
‣ size(A):

‣ size(B):

‣ size(C):
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More
• Identities: for a matrix X,
‣ d(X-1) =

‣ d(det X) = 

‣ d(ln |det X|) = 

‣…
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Example: linear regression

• Training examples: 

• Input feature vectors:

• Target vectors: 

• Weight matrix:

• minW L = 
‣ as matrix: 
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Linear regression

• L = ||Y – WX||2 =

• dL =

21

F

I accidentally transposed WX-
>XW here, compared to the 
previous slide -- so for this 
slide only, the regression is 
from rows of X to rows of Y
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Identification theorems
• Sometimes useful to go back and forth 

between differential & ordinary notations
‣ not always possible: e.g., d(XTX) = 

• Six common cases (ID thms):
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ID for df(x) scalar x vector x matrix X

scalar f

vector f

matrix F

df = a dx df = aTdx df = tr(ATdX)

df = a dx df = A dx

dF = A dx
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Ex: Infomax ICA

• Training examples xi ∈ ℝd, i = 1:n

• Transformation yi = g(Wxi)

‣W ∈ ℝd"d  

‣ g(z) = 

• Want:
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Ex: Infomax ICA
• yi = g(Wxi)
‣ dyi = 

• Method: maxW #i –ln(P(yi))
‣ where P(yi) = 
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