Optimization for well-behaved problems

For statistical learning problems, "well-behaved" means:

- signal to noise ratio is decently high
- correlations between predictor variables are under control
- number of predictors p can be larger than number of observations n, but not absurdly so

For well-behaved learning problems, people have observed that gradient or generalized gradient descent can converge extremely quickly (much more so than predicted by O(1/k) rate)

Largely unexplained by theory, topic of current research. E.g., very recent work⁴ shows that for some well-behaved problems, w.h.p.:

$$||x^{(k)} - x^*||^2 \le c^k ||x^{(0)} - x^*||^2 + o(||x^* - x^{\mathsf{true}}||^2)$$

⁴Agarwal et al. (2012), Fast global convergence of gradient methods for high-dimensional statistical recovery

Administrivia

- HW2 out as of this past Tuesday—due 10/9
- Scribing
 - ▶ Scribes I—6 ready soon; handling errata
 - ▶ missing days: 11/6, 12/4, and 12/6
- Projects:
 - you should expect to be contacted by TA mentor in next weeks
 - project milestone: 10/30

Matrix differential calculus

10-725 Optimization Geoff Gordon Ryan Tibshirani

Matrix calculus pain

- Take derivatives of fns involving matrices:
 - write as huge multiple summations w/ lots of terms
 - take derivative as usual, introducing more terms
 - ▶ case statements for i = j vs. $i \neq j$
 - try to recognize that output is equivalent to some human-readable form
 - hope for no indexing errors...
- Is there a better way?

Differentials

- Assume f sufficiently "nice"
- Taylor: f(y) = f(x) + f'(x) (y-x) + r(y-x)
- with $r(y-x) / |y-x| \rightarrow 0$ as $y \rightarrow x \times fixed$
 - Notation: df = f(y) f(x) dx = y x "differentials"

$$df = f'(x) dx \left[f'(dx) \right]$$

Definition

Write

$$dx = y - x$$

$$\bullet df = f(y) - f(x)$$

Suppose

 $df = \alpha(x; dx) + \Gamma(dx)$ $\alpha(x; udx) = ua(x; dx)$ with a linear in dx $(x_1 dx_1 + dx_2) = \alpha(x_1 dx_1)$ +a(x;dxz)

- ▶ and r(dx)/(dx(→ 0 as dx → 0
- Then: a(x;dx) is differential of f

Matrix differentials

- For matrix X or matrix-valued function F(X):
 - \rightarrow dX = $[A \times_{i}]_{i}$

 - ▶ where a linear in dx
- and r(Ax)/|Ax| $\rightarrow 0$ as $Ax \rightarrow 0$ e^{x} $Ax \rightarrow 0$ e^{x} $Ax \rightarrow 0$ e^{x} $Ax \rightarrow 0$ e^{x}

Working with differentials

• Linearity:

$$d(f(x) + g(x)) = df(x) + dg(x)$$

- If g linear, dg(f(x)) = g(df(x)); for example
 - reshape(A, [m n k ...])
 - vec(A) = A(:) = reshape(A, [], I)
 - $tr(A) = \sum_{i} A_{ii}$
 - ▶ A^T

Reshape

```
>> A = reshape(1:24, [2 3 4])
A(:,:,1) =
A(:,:,2) =
   7 9 11
      10
          12
A(:,:,3) =
   13 15 17
   14 16 18
A(:,:,4) =
   19
     21 23
   20 22 24
```

```
\gg B = reshape(A, [4 3 2])
B(:,:,1) =
   2 6 10
   3 7 11
        8 12
B(:,:,2) =
   13 17 21
   14 18 22
   15 19 23
   16 20
            24
```

Working with differentials

(dg)/dg/l > 0
as dg > 0 • Chain rule: L(x) = f(g(x))▶ want: d((x) = f'(g(x))g'(x) dx ▶ have: $dF = a(g(x);dg) \left[+ \Gamma(dg) \right] \rightarrow f'(g(x))dg$ $dq = b(x; dx) \left[+ s(dx) \right] \rightarrow g'(x) dx$ $\frac{dL}{dx} = a(q(x); b(x; dx) + s(dx)) + r(dg)$ = a(q(x); b(x;dx)) + [a(q(x); s(Ax)) + r(dq)] as dx 70 $\alpha(q(x); s(dx)) / (dx) + r(dg) / (dx) = 0$ $\alpha(q(x); s(dx)) / (dx) + r(dg) / (dg) / (dg) = 0$ $\alpha(q(x); s(dx)) / (dx) + r(dg) / (dg) / (dg) = 0$

Working with differentials

- Product rule: L(x) = c(f(x), g(x))
 - where c is bilinear = linear in each argument (with other argument fixed)
 - e.g., L(x) = f(x)g(x): f, g scalars, vectors, or matrices

$$dL = c(df;g(x)) + c(f(x);dg)$$

Lots of products

- Cross product: $d(a \times b) = Aa \times b + a \times db$
- Hadamard product A B = A .* B
 - $\blacktriangleright (A \circ B)_{ij} = A_{ij} B_{ij}$
 - $b d(A \circ B) = A \circ B + A \circ A B$
- Kronecker product $d(A \otimes B) = AA \otimes B + A \otimes AB$
- Frobenius product A:B = $\sum_{ij} k_{ij} \beta_{ij}$
- Khatri-Rao product: $d(A*B) = A \times B + A \times B$

Kronecker product

```
>> A = reshape(1:6, 2, 3)
A =
>> B = 2*ones(2)
B =
```

```
>> kron(A, B)
ans =
                         10
                              10
                              10
                    8 12
                              12
                         12
                              12
>> kron(B, A)
ans =
              10
                              10
              12 4
                              12
             10 2
                              10
              12
                              12
```

Hadamard product

a, b vectors

- ▶ diag(a) diag(b) = diag (a o b)
- ▶ $tr(diag(a) diag(b)) = \alpha^{\tau}$ (
- ▶ tr(diag(b)) = +((diag(1)) = 1 b

Some examples

• $L = (Y-XW)^T(Y-XW)$: differential wrt W

Some examples

metrix X

•
$$L = [x_i]^2/2$$

• $L = [x^T \times]_i^2/2$

• $dL = [x^T \times]_i^2/2$

Trace

•
$$tr(A) = \sum_{i} A_{ii}$$
• $d tr(f(x)) = +r(Af(x))$
• $tr(x) = \times$
• $tr(X^{T}) = +r(\times)$

- Frobenius product:
 - $A:B = \sum_{i,j} A_{i,j} B_{i,j} = tr(A^TB)$

Trace rotation

- tr(AB) = tr(BA)
- tr(ABC) = +r (CAB) = +r (BCA)

 - ▶ size(B): ∧ × ★ ★ ★

More

• Identities: for a matrix X,

$$b d(X^{-1}) = \times^{-1} (1 \times 1) \times^{-1}$$

) ...

Example: linear regression

- Training examples: (x; y;) i= 1......
- Input feature vectors: X: e R
- Weight matrix: We R
- minw L = $\sum_{i} \|y_i w_{x_i}\|_2^2$

I accidentally transposed WX->XW here, compared to the previous slide -- so for this slide only, the regression is from rows of X to rows of Y

Linear regression

Identification theorems

- Sometimes useful to go back and forth between differential & ordinary notations
 - ▶ not always possible: e.g., $d(X^TX) = A \times^T \times Y + X^T \times Y$
- Six common cases (ID thms):

ID for df(x)	scalar x	vector X	matrix X
scalar f	df = a dx	$df = \mathbf{a}^{T} d\mathbf{x}$	$df = tr(A^T dX)$
vector f	$d\mathbf{f} = \mathbf{a} dx$	$d\mathbf{f} = A d\mathbf{x}$	
matrix F	dF = A dx		

Ex: Infomax ICA

- Training examples $x_i \in \mathbb{R}^d$, i = 1:n
- Transformation $y_i = g(Wx_i)$
 - ▶ W ∈ Rd×d parameter
 - ▶ g(z) = scalar for componentwise
- · Want: independent components

Ex: Infomax ICA

- $y_i = g(Wx_i)$ • $dy_i = J(x_i, W)dx_i = J_i dx_i$ $est. d - \int P(y_i) h P(y_i)$
- Method: $\max_{W} \sum_{i} -ln(P(y_i))$

