Subgradient method

Geoff Gordon & Ryan Tibshirani
Optimization 10-725 / 36-725
Remember gradient descent

We want to solve

$$\min_{x \in \mathbb{R}^n} f(x),$$

for f convex and differentiable

Gradient descent: choose initial $x^{(0)} \in \mathbb{R}^n$, repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f(x^{(k-1)}), \quad k = 1, 2, 3, \ldots$$

If ∇f Lipschitz, gradient descent has convergence rate $O(1/k)$

Downsides:
- Can be slow ← later
- Doesn’t work for nondifferentiable functions ← today
Today:

- Subgradients
- Examples and properties
- Subgradient method
- Convergence rate
Subgradients

Remember that for convex $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{all } x, y$$

I.e., linear approximation always underestimates f

A **subgradient** of convex $f : \mathbb{R}^n \to \mathbb{R}$ at x is any $g \in \mathbb{R}^n$ such that

$$f(y) \geq f(x) + g^T (y - x), \quad \text{all } y$$

- Always exists
- If f differentiable at x, then $g = \nabla f(x)$ uniquely
- Actually, same definition works for nonconvex f (however, subgradient need not exist)
Examples

Consider \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = |x| \)

- For \(x \neq 0 \), unique subgradient \(g = \text{sign}(x) \)
- For \(x = 0 \), subgradient \(g \) is any element of \([-1, 1]\)
Consider $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = \|x\|$ (Euclidean norm)

- For $x \neq 0$, unique subgradient $g = x/\|x\|
- For x = 0, subgradient g is any element of $\{z : \|z\| \leq 1\}$
Consider $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = \|x\|_1$

- For $x_i \neq 0$, unique ith component $g_i = \text{sign}(x_i)$
- For $x_i = 0$, ith component g_i is an element of $[-1, 1]$
Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ be convex, differentiable, and consider $f(x) = \max\{f_1(x), f_2(x)\}$

- For $f_1(x) > f_2(x)$, unique subgradient $g = \nabla f_1(x)$
- For $f_2(x) > f_1(x)$, unique subgradient $g = \nabla f_2(x)$
- For $f_1(x) = f_2(x)$, subgradient g is any point on the line segment between $\nabla f_1(x)$ and $\nabla f_2(x)$
Subdifferential

Set of all subgradients of convex f is called the **subdifferential**:

$$\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$$

- $\partial f(x)$ is closed and convex (even for nonconvex f)
- Nonempty (can be empty for nonconvex f)
- If f is differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$
Connection to convex geometry

Convex set \(C \subseteq \mathbb{R}^n \), consider indicator function \(I_C : \mathbb{R}^n \rightarrow \mathbb{R} \),

\[
I_C(x) = I\{x \in C\} = \begin{cases}
0 & \text{if } x \in C \\
\infty & \text{if } x \notin C
\end{cases}
\]

For \(x \in C \), \(\partial I_C(x) = \mathcal{N}_C(x) \), the normal cone of \(C \) at \(x \),

\[
\mathcal{N}_C(x) = \{ g \in \mathbb{R}^n : g^T x \geq g^T y \text{ for any } y \in C \}
\]

Why? Recall definition of subgradient \(g \),

\[
I_C(y) \geq I_C(x) + g^T(y - x) \quad \text{for all } y
\]

- For \(y \notin C \), \(I_C(y) = \infty \)
- For \(y \in C \), this means \(0 \geq g^T(y - x) \)
Subgradient calculus

Basic rules for convex functions:

- Scaling: \(\partial(af) = a \cdot \partial f \) provided \(a > 0 \)
- Addition: \(\partial(f_1 + f_2) = \partial f_1 + \partial f_2 \)
- Affine composition: if \(g(x) = f(Ax + b) \), then
 \[
 \partial g(x) = A^T \partial f(Ax + b)
 \]
- Finite pointwise maximum: if \(f(x) = \max_{i=1,...,m} f_i(x) \), then
 \[
 \partial f(x) = \text{conv}\left(\bigcup_{i : f_i(x) = f(x)} \partial f_i(x) \right)
 \]
 the convex hull of union of subdifferentials of all active functions at \(x \)
• General pointwise maximum: if \(f(x) = \max_{s \in S} f_s(x) \), then

\[
\partial f(x) \supseteq \text{cl} \left\{ \text{conv} \left(\bigcup_{s: f_s(x) = f(x)} \partial f_s(x) \right) \right\}
\]

and under some regularity conditions (on \(S, f_s \)), we get =

• Norms: important special case, \(f(x) = \|x\|_p \). Let \(q \) be such that \(\frac{1}{p} + \frac{1}{q} = 1 \), then

\[
\partial f(x) = \left\{ y : \|y\|_q \leq 1 \text{ and } y^T x = \max_{\|z\|_q \leq 1} z^T x \right\}
\]

Why is this a special case? Note

\[
\|x\|_p = \max_{\|z\|_q \leq 1} z^T x
\]
Why subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function
Optimality condition

For convex f,

$$f(x^*) = \min_{x \in \mathbb{R}^n} f(x) \iff 0 \in \partial f(x^*)$$

I.e., x^* is a minimizer if and only if 0 is a subgradient of f at x^*

Why? Easy: $g = 0$ being a subgradient means that for all y

$$f(y) \geq f(x^*) + 0^T(y - x^*) = f(x^*)$$

Note analogy to differentiable case, where $\partial f(x) = \{\nabla f(x)\}$
Soft-thresholding

Lasso problem can be parametrized as

$$\min_x \frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$

where $\lambda \geq 0$. Consider simplified problem with $A = I$:

$$\min_x \frac{1}{2} \|y - x\|^2 + \lambda \|x\|_1$$

Claim: solution of simple problem is $x^* = S_\lambda(y)$, where S_λ is the soft-thresholding operator:

$$[S_\lambda(y)]_i = \begin{cases}
 y_i - \lambda & \text{if } y_i > \lambda \\
 0 & \text{if } -\lambda \leq y_i \leq \lambda \\
 y_i + \lambda & \text{if } y_i < -\lambda
\end{cases}$$
Why? Subgradients of $f(x) = \frac{1}{2}\|y - x\|^2 + \lambda\|x\|_1$ are

$$g = x - y + \lambda s,$$

where $s_i = \text{sign}(x_i)$ if $x_i \neq 0$ and $s_i \in [-1, 1]$ if $x_i = 0$

Now just plug in $x = S_\lambda(y)$ and check we can get $g = 0$

Soft-thresholding in one variable:
Subgradient method

Given convex $f : \mathbb{R}^n \rightarrow \mathbb{R}$, not necessarily differentiable

Subgradient method: just like gradient descent, but replacing gradients with subgradients. I.e., initialize $x^{(0)}$, then repeat

$$x^{(k)} = x^{(k-1)} - t_k \cdot g^{(k-1)}, \quad k = 1, 2, 3, \ldots,$$

where $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

Subgradient method is not necessarily a descent method, so we keep track of best iterate $x^{(k)}_{\text{best}}$ among $x^{(1)}, \ldots x^{(k)}$ so far, i.e.,

$$f(x^{(k)}_{\text{best}}) = \min_{i=1,\ldots,k} f(x^{(i)})$$
Step size choices

- **Fixed step size:** $t_k = t$ all $k = 1, 2, 3, \ldots$
- **Diminishing step size:** choose t_k to satisfy
 \[
 \sum_{k=1}^{\infty} t_k^2 < \infty, \quad \sum_{k=1}^{\infty} t_k = \infty,
 \]
 i.e., square summable but not summable

 Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
all step sizes options are pre-specified, not adaptively computed
Convergence analysis

Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is convex, also:

- f is Lipschitz continuous with constant $G > 0$,

 $$|f(x) - f(y)| \leq G\|x - y\| \quad \text{for all } x, y$$

 Equivalently: $\|g\| \leq G$ for any subgradient of f at any x

- $\|x^{(1)} - x^*\| \leq R$ (equivalently, $\|x^{(0)} - x^*\|$ is bounded)

Theorem: For a fixed step size t, subgradient method satisfies

$$\lim_{k \to \infty} f(x_{\text{best}}^{(k)}) \leq f(x^*) + \frac{G^2 t}{2}$$

Theorem: For diminishing step sizes, subgradient method satisfies

$$\lim_{k \to \infty} f(x_{\text{best}}^{(k)}) = f(x^*)$$
Can prove both results from same basic inequality. Key steps:

- Using definition of subgradient,

\[
\|x^{(k+1)} - x^*\|^2 \leq \|x^{(k)} - x^*\|^2 - 2t_k (f(x^{(k)}) - f(x^*)) + t_k^2 \|g^{(k)}\|^2
\]

- Iterating last inequality,

\[
\|x^{(k+1)} - x^*\|^2 \leq \|x^{(1)} - x^*\|^2 - 2 \sum_{i=1}^{k} t_i (f(x^{(i)}) - f(x^*)) + \sum_{i=1}^{k} t_i^2 \|g^{(i)}\|^2
\]
• Using \(\|x^{(k+1)} - x^*\| \geq 0\) and \(\|x^{(1)} - x^*\| \leq R\),

\[
2 \sum_{i=1}^{k} t_i (f(x^{(i)}) - f(x^*)) \leq R^2 + \sum_{i=1}^{k} t_i^2 \|g^{(i)}\|^2
\]

• Introducing \(f(x_{\text{best}}^{(k)})\),

\[
2 \sum_{i=1}^{k} t_i (f(x^{(i)}) - f(x^*)) \geq 2 \left(\sum_{i=1}^{k} t_i \right) (f(x_{\text{best}}^{(k)}) - f(x^*))
\]

• Plugging this in and using \(\|g^{(i)}\| \leq G\),

\[
f(x_{\text{best}}^{(k)}) - f(x^*) \leq \frac{R^2 + G^2 \sum_{i=1}^{k} t_i^2}{2 \sum_{i=1}^{k} t_i}
\]
Convergence proofs

For constant step size t, basic bound is

$$\frac{R^2 + G^2 t^2 k}{2tk} \to \frac{G^2 t}{2} \text{ as } k \to \infty$$

For diminishing step sizes t_k,

$$\sum_{i=1}^{\infty} t_i^2 < \infty, \quad \sum_{i=1}^{\infty} t_i = \infty,$$

we get

$$\frac{R^2 + G^2 \sum_{i=1}^{k} t_i^2}{2 \sum_{i=1}^{k} t_i} \to 0 \text{ as } k \to \infty$$
Convergence rate

After k iterations, what is complexity of error $f(x_{\text{best}}^{(k)}) - f(x^*)$?

Consider taking $t_i = R/(G\sqrt{k})$, all $i = 1, \ldots k$. Then basic bound is

$$\frac{R^2 + G^2 \sum_{i=1}^{k} t_i^2}{2 \sum_{i=1}^{k} t_i} = \frac{RG}{\sqrt{k}}$$

Can show this choice is the best we can do (i.e., minimizes bound)

i.e., subgradient method has convergence rate $O(1/\sqrt{k})$

i.e., to get $f(x_{\text{best}}^{(k)}) - f(x^*) \leq \epsilon$, need $O(1/\epsilon^2)$ iterations
Intersection of sets

Example from Boyd’s lecture notes: suppose we want to find \(x^* \in C_1 \cap \ldots \cap C_m \), i.e., find point in intersection of closed, convex sets \(C_1, \ldots C_m \)

First define

\[
f(x) = \max_{i=1,\ldots,m} \text{dist}(x, C_i),
\]

and now solve

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

Note that \(f(x^*) = 0 \Rightarrow x^* \in C_1 \cap \ldots \cap C_m \)

Recall distance to set \(C \),

\[
\text{dist}(x, C) = \min\{\|x - u\| : u \in C\}
\]
For closed, convex C, there is a unique point minimizing $\|x - u\|$ over $u \in C$. Denoted $u^* = P_C(x)$, so $\text{dist}(x, C) = \|x - P_C(x)\|

Let $f_i(x) = \text{dist}(x, C_i)$, each i. Then $f(x) = \max_{i=1,\ldots,m} f_i(x)$, and

- For each i, and $x \notin C_i$, $\nabla f_i(x) = \frac{x - P_{C_i}(x)}{\|x - P_{C_i}(x)\|}$
- If $f(x) = f_i(x) \neq 0$, then $\frac{x - P_{C_i}(x)}{\|x - P_{C_i}(x)\|} \in \partial f(x)$
Now apply subgradient method with step size $t_k = f(x^{(k-1)})$
(Polyak step size, can show that we get convergence)

Hence at iteration k, find C_i so that $x^{(k-1)}$ is farthest from C_i. Then update

$$x^{(k)} = x^{(k-1)} - f(x^{(k-1)}) \frac{x^{(k-1)} - PC_i(x^{(k-1)})}{\|x^{(k-1)} - PC_i(x^{(k-1)})\|}$$

$$= PC_i(x^{(k-1)})$$

Here we used

$f(x^{(k-1)}) = \text{dist}(x^{(k-1)}, C_i) = \|x^{(k-1)} - PC_i(x^{(k-1)})\|$

For two sets, this is exactly the famous alternating projections method, i.e., just keep projecting back and forth
(From Boyd's notes)
Can we do better?

Strength of subgradient method: broad applicability

Downside: $O(1/\sqrt{k})$ rate is really slow ... can we do better?

Given starting point $x^{(0)}$. Setup:

- Problem class: convex functions f with solution x^*, with $\|x^{(0)} - x^*\| \leq R$, f Lipschitz with constant $G > 0$ on $\{x : \|x - x^{(0)}\| \leq R\}$
- Weak oracle: given x, oracle returns a subgradient $g \in \partial f(x)$
- Nonsmooth first-order methods: iterative methods that start with $x^{(0)}$ and update $x^{(k)}$ in

$$x^{(0)} + \text{span}\{g^{(0)}, g^{(1)}, \ldots, g^{(k-1)}\}$$

subgradients $g^{(0)}, g^{(1)}, \ldots, g^{(k-1)}$ come from weak oracle
Theorem (Nesterov): For any \(k \leq n - 1 \) and starting point \(x^{(0)} \), there is a function in the problem class such that any nonsmooth first-order method satisfies

\[
f(x^{(k)}) - f(x^*) \geq \frac{RG}{2(1 + \sqrt{k + 1})}
\]

Proof: We’ll do the proof for \(k = n - 1 \) and \(x^{(0)} = 0 \); the proof is similar otherwise. Let

\[
f(x) = \max_{i=1,...,n} x_i + \frac{1}{2}||x||^2
\]

Solution: \(x^* = (-1/n, \ldots -1/n) \), \(f(x^*) = -1/(2n) \)

For \(R = 1/\sqrt{n} \), \(f \) is Lipschitz with \(G = 1 + 1/\sqrt{n} \)

Oracle: returns \(g = e_j + x \), where \(j \) is smallest index such that \(x_j = \max_{i=1,...,n} x_i \)
Claim: for any $i \in 1, \ldots, n-1$, the ith iterate satisfies

$$x_{i+1}^{(i)} = \ldots = x_n^{(i)} = 0$$

Start with $i = 1$: note $g^{(0)} = e_1$. Then:

- $\text{span}\{g^{(0)}, g^{(1)}\} \subseteq \text{span}\{e_1, e_2\}$
- $\text{span}\{g^{(0)}, g^{(1)}, g^{(2)}\} \subseteq \text{span}\{e_1, e_2, e_3\}$
- \ldots
- $\text{span}\{g^{(0)}, g^{(1)}, \ldots g^{(i-1)}\} \subseteq \text{span}\{e_1, \ldots, e_i\}$

Therefore $f(x^{(n-1)}) \geq 0$, recall $f(x^*) = -1/(2n)$, so

$$f(x^{(n-1)}) - f(x^*) \geq \frac{1}{2n} = \frac{RG}{2(1 + \sqrt{n})}$$
Improving on the subgradient method

To improve, we must go beyond nonsmooth first-order methods.

There are many ways to improve for general nonconvex problems, e.g., localization methods, filtered subgradients, memory terms.

Instead, we’ll focus on minimizing functions of the form

$$f(x) = g(x) + h(x)$$

where g is convex and differentiable, h is convex.

For a lot of problems (i.e., functions h), we can recover $O(1/k)$ rate of gradient descent with a simple algorithm, having big practical consequences.
References

• S. Boyd, Lecture Notes for EE 264B, Stanford University, Spring 2010-2011
• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring 2011-2012