First-order methods Convexity

10-725 Optimization Geoff Gordon Ryan Tibshirani

Administrivia

- Schedule posted:
 - ▶ Time for poster session: 3:30–6:30, Wed, Dec 12
 - ▶ Midterm: Tue, Nov 6 (in class)
 - ▶ HWI will be released: hopefully Tue, Sep 4
 - ▶ First recitations: next week
- How to do scribing:
 - http://www.cs.cmu.edu/~aarti/Class/10704/lecs.html
- In case of mishaps with scribe signup sheet

Worked ex: image understanding

Geoff Gordon—10-725 Optimization—Fall 2012

Edge detectors

Gradient descent

- for k = 1, 2, ...

 - $\rightarrow x_k \leftarrow x_{k-1} t_k g_k$
- Choices: x_0 , t_k , when to stop

Gradient descent: example

Gradient descent: example

In ML & stats

- Often have $f(x) = \bigoplus_{i \in I} \left[f_i(x) \right]$
 - **▶** where i ~ *P(3)*
- E.g., linear regression: $f_{a}(a \times -b)^2$
- Let: I = 1.1.d. sample ~ p(i)
 - ▶ then $\hat{f}(x) = \sum_{i \in I} f_i(x) / |I|$

When do we stop?

ML/stats: held out data

- Early stopping
 - regularization

 why bolly?

When do we stop?

int S(x)

- Using convergence bounds (see below)

• usual form is: $(f(x_0) - f^*) (f_0) = (f(x_0) - f^*) (f_0) = f(x_0) (f_0) (f_0) = f(x_0) (f_0) (f_0) = f(x_0) (f_0) = f(x_$

▶ need estimates of: