Introduction: Why Optimization?

Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725

Where this course fits in

In many ML/statistics/engineering courses, you learn how to:

In this course, you'll learn that $\min f(x)$ is not the end of the story, i.e., you'll learn

- Algorithms for solving $\min f(x)$, and how to choose between them
- How knowledge of algorithms for $\min f(x)$ can influence the choice of translation
- How knowledge of algorithms for $\min f(x)$ can help you understand things about the problem

Optimization in statistics

A huge number of statistics problems can be cast as optimization problems, e.g.,

- Regression
- Classification
- Maximum likelihood

But a lot of problems cannot, and are based directly on algorithms or procedures, e.g.,

- Clustering
- Correlation analysis
- Model assessment

Not to say one camp is better than the other ... but if you can cast something as an optimization problem, it is often worthwhile

Sparse linear regression

Given response $y \in \mathbb{R}^n$ and predictors $A = (A_1, \dots A_p) \in \mathbb{R}^{n \times p}$. We consider the model

$$y \approx Ax$$

But $n \ll p$, and we think many of the variables $A_1, \ldots A_p$ could be unimportant. I.e., we want many components of x to be zero

E.g., size of tumor \approx linear combination of genetic information, but not all gene expression measurements are relevant

Three methods

Solving the usual linear regression problem

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|^2$$

would return a dense x (and not well-defined if p > n).

We want a sparse x. How? Three methods:

- Best subset selection nonconvex optimization problem
- Forward stepwise regression algorithm
- Lasso convex optimization problem

Best subset selection

Natural idea, we solve

$$\min_{x \in \mathbb{R}^p} \, \|y - Ax\|^2 \ \text{ subject to } \ \|x\|_0 \leq k$$

where $\|x\|_0 =$ number of nonzero components in x, nonconvex "norm"

$$\{x \in \mathbb{R}^2 : ||x||_0 \le 1\}$$

- Problem is NP-hard
- In practice, solution cannot be computed for $p \gtrsim 40$
- Very little is known about properties of solution

Forward stepwize regression

Also natural idea: start with x = 0, then

- Find variable j such that $|A_j^T y|$ is largest (note: if variables have been centered and scaled, then $A_j^T y = \text{cor}(A_j, y)$)
- Update x_j by regressing y onto A_j , i.e., solve

$$\min_{x_j \in \mathbb{R}} \|y - A_j x_j\|^2$$

- Now find variable $k \neq j$ such that $|A_k^T r|$ is largest, where $r = y A_j x_j$ (i.e., $|\operatorname{cor}(A_k, r)|$ is largest)
- Update x_j, x_k by regressing y onto A_j, A_k
- Repeat

Some properties of this estimate are known, but not many; proofs are (relatively) complicated

Lasso

We solve

$$\min_{x \in \mathbb{R}^p} \|y - Ax\|^2 \text{ subject to } \|x\|_1 \le t$$

where $||x||_1 = \sum_{i=1}^p |x_i|$, a convex norm

$$\{x \in \mathbb{R}^2 : ||x||_1 \le 1\}$$

- Delivers exact zeros in solution lower t, more zeros
- Problem is convex and readily solved
- Many properties are known about the solution

Comparison

	# of Google Scholar hits	# of algorithms	Properties known
Best subset selection	2274	1 (brute force)	Little
Forward stepwise regression	7207	1 (itself)	Some
Lasso	$13,100^1$	≥ 10	Lots

 $^{^1}$ I searched for 'lasso + statistics' because 'lasso' resulted in nearly 8 times as many hits. I also tried to be fair, and search for best subset selection and forward stepwise regression under their alternative names. On August 27, 2010.