Introduction

10-725 Optimization Geoff Gordon Ryan Tibshirani

- http://www.cs.cmu.edu/~ggordon/10725-F12/
- http://groups.google.com/group/10725-f12

- Prerequisites: no formal ones, but class will be fast-paced
- Algorithms: basic data structures & complexity
- Programming: we assume you can do it
- Linear algebra: matrices are your friends
- ML/stats: source of motivating examples
- Most important: formal thinking

- Coursework: 5 HWs, scribing, midterm, project
- Project: use optimization to do something cool!
 - ▶ groups of 2–3 (no singletons please)
 - proposal, milestone, final poster session, final paper
- Final poster session: Tue or Wed, Dec 11 or 12, starting at about 3PM in NSH atrium, lasting 3 hrs

- Scribing
 - multiple scribes per lecture (coordinate one writeup); required to do once during term
 - sign up now to avoid timing problems
- Late days: you have 5 to use wisely
 - ▶ in lieu of any special exceptions for illness, travel, holidays, etc.—your responsibility to allocate
 - some deadlines will be non-extendable

- Working together
 - great to have study groups
 - > always write up your own solutions, closed notes
 - disclose collaborations on front page of HW

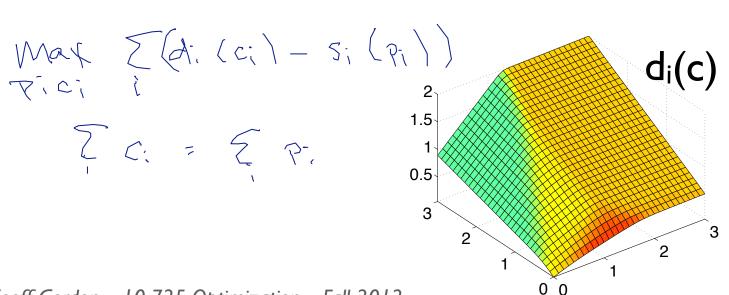
- Office hours
- Recitations: none this week
- Audit forms: please audit r.t. just sitting in
 - except: postdocs & faculty welcome to sit in
- Waitlist: there shouldn't be one
- Videos

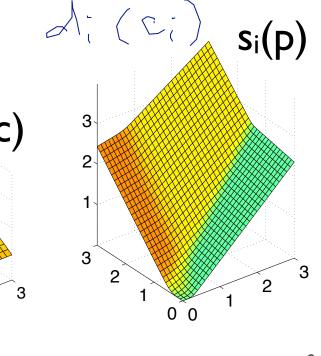
Most important

• Work hard, have fun!

Optimization example

- Simple economy: m agents, n goods
 - \blacktriangleright each agent: production $p_i \in R^n,$ consumption $c_i \in R^n$
- Cost of producing p for agent i:
- Utility of consuming cafor agent i:





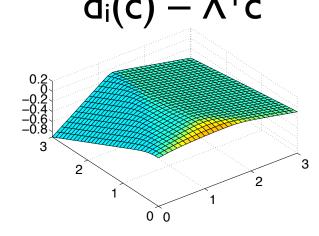
Geoff Gordon—10-725 Optimization—Fall 2012

Walrasian equilibrium

$$\max \sum_{i} [d_i(c_i) - s_i(p_i)]$$
 s.t. $\sum_{i} p_i = \sum_{i} c_i$

• Idea: put price λ_j on good j; agents optimize production/consumption independently

- ▶ high price → produce ↑, consume ↓
- ▶ low price → produce ↓, consume ↑
- ▶ "just right" prices → constraint satisfied



Algorithm: tâtonnement

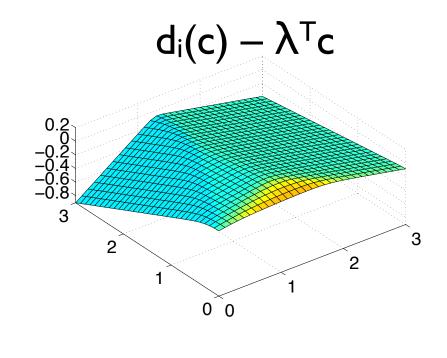
$$\max \sum_{i} [d_i(c_i) - s_i(p_i)] \text{ s.t. } \sum_{i} p_i = \sum_{i} c_i$$

$$\lambda \leftarrow [0\ 0\ 0\ ...]^T$$

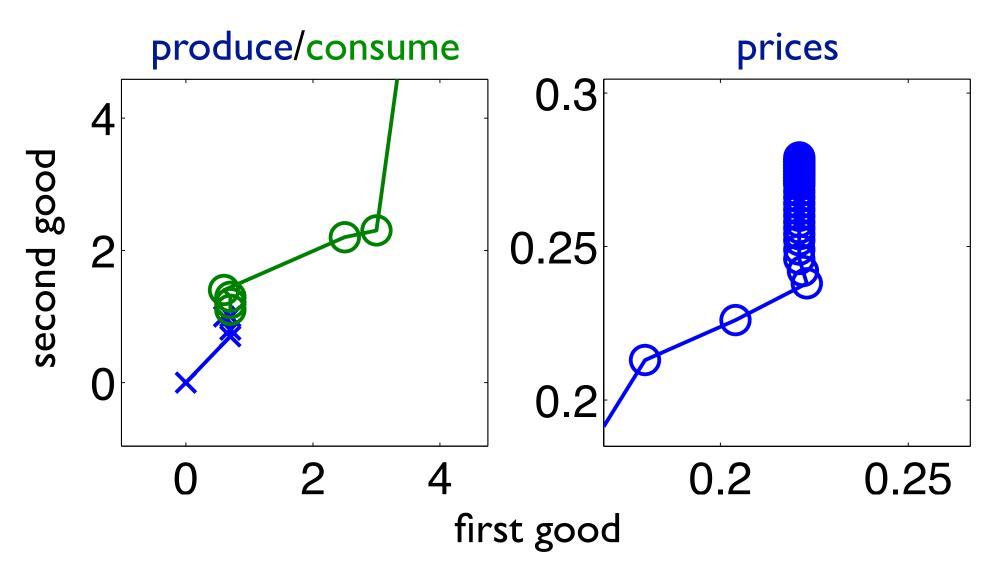
for
$$k = 1, 2, ...$$

each agent solves for p_i
 and c_i at prices λ

$$\lambda$$
 ← λ + t_k(c − p)



Results for a random market



Why is tâtonnement cool?

- Algorithm is nearly obvious, given setup
 - Leon Walras (1874), based on ideas of Antoine Augustin Cournot (1838)
- But analysis (Arrow and Debreu, 1950s) is subtle: needs concepts from later in this course
 - duality, dual decomposition, convergence rates of gradient descent
- Variants need even more subtlety

"Typical" problem

• Minimize
$$f(x)$$
 s.t. $g(x) = 0$ is $h = 0$
 $g(x) = 0$

- e.g.: f() and g_i() all linear:
- e.g.: f() and gi() all convex:

• e.g.: f() linear, g₁() is -min(eig(reshape(x, k, k))):

Ubiquitous (and pretty cool)

- ▶ LPs at least as old as Fourier
- ▶ first practical algorithm: simplex (Dantzig, 1947)
 - for a long time, best runtime bounds were exponential, but practical runtime observed good
- many thought LPs were NP-hard
- ▶ Kachiyan (1979), Karmarkar (1984): LP in P
- Spielman & Teng (2002): simplex solves "most" LPs in poly time
- ▶ LPs are P-complete: "hardest" poly-time problem

Optimization for ML & stats

- Lots of ML & stats based on optimization
 - regression, PCA, max 1. Wilhood, SUM, MDP

- Exceptions?
 - integration posterion, hypothesis testing?

 nonparauntrics, per belief propagation, Trans

 properly testing?
- Advantages
 - fast generic algo's expressive
- connect objective to starts

usually many choices, **widely** different berformance (runtime, solution quality, ..

Choices

- Set up problem
- Transformations: duality, relaxations, approximations
- Algorithms:
 - ▶ first order, interior point, ellipsoid, cutting plane
 - > smooth v. nonsmooth v. some combination
 - eigensystems
 - message passing / relaxation

Consequences

- First order (gradient descent, FISTA, Nesterov's method) v. higher order (Newton, log barrier, ellipsoid, affine scaling)
 - ▶ # iters poly in I/ϵ vs. in $log(I/\epsilon)$
 - \blacktriangleright cost of each iteration: O(n) or less, vs. O(n³) or so
- Balanced (#constrs ≈ #vars) or not?
 - ▶ e.g., ellipsoid handles #constrs = ∞

Consequences

- Sparsity? Locality? Other special structure?
 - in solution, in active constraints, in matrices describing objective or constraints
- E.g., Ax = b: how fast can we compute Ax?
- E.g., simplex vs. log barrier

Consequences

- What degree of "niceness"?
 - differentiable, strongly convex, self-concordant, submodular
- Can we split f(x) = g(x) + h(x)?

- Is f(x) "close to" a smooth fn?
- Care more about practical implementation or analysis?

Some more examples

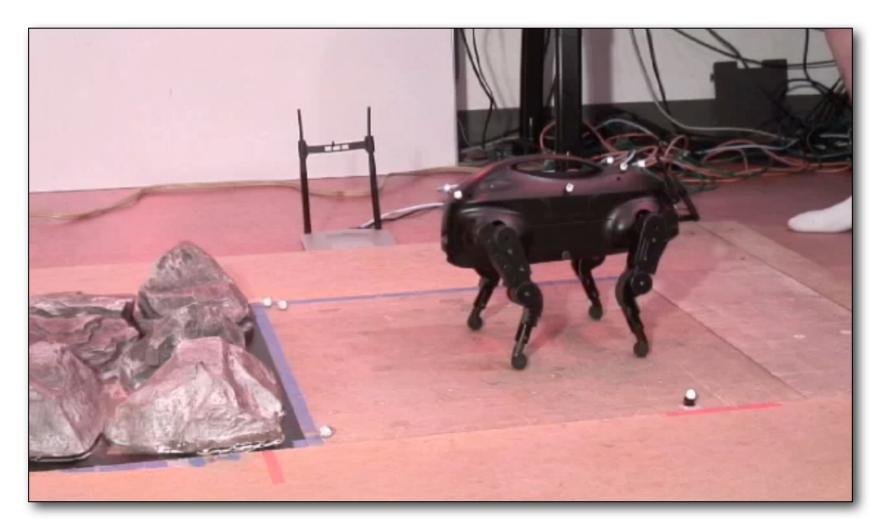
- Image segmentation
- Perceptron, SVM
- MPE in graphical model
- Linear regression
- Lasso (group, graphical, ...)
- Parsing, grammar learning
- Sensor placement in a sensor network

- Equilibria in games (CE, EFCE, polymatrix)
- Maximum entropy
- Network flow
- TSP
- Experimental design
- Compressed sensing
- ...

Example: playing poker

- http://www.cs.cmu.edu/~ggordon/poker/
- Problem: compute a minimax equilibrium
- Even this simple game has 2²⁶ strategies/player
- We reduce to an LP with ~100 variables
- Similar methods have been used for competition-level 2-player limit Texas Hold'em
 - abstract the game by clustering information sets
 - buy a really big workstation, run for days

Dynamic walking



http://groups.csail.mit.edu/locomotion/movies/LittleDog MIT dynamic short.f4v