10-725: Optimization Fall 2012

Lecture 8: September 20
Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Avinava Dubey

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

8.1 Review of Subgradient Method

One of the methods to optimize a convex but not necessarily differentiable function is to use subgradient
methods. Thus the objective is to

min f(z) (8.1)

where f(z) is convex, but may not be differentiable. The update step after choosing an initial point in
(0) n
%) e R™ is

a®) = k=D gD p 1 93 (82)

where ¢g*~1) is a subgradient of the function f at 2(*~1. This is similar to gradient descent step with the
gradient replaced by sub-gradient.

A major problem with subgradient methods is the rate of convergence which is O(1/v/k) when the function
is Lipschitz on a bounded set containing its minimizer. A bit of the structure of the objective function can
be used to get a better convergence rate. In generalized gradient decent the knowledge of certain form of
the objective will lead to a faster convergence rate.

8.2 Generalized Gradient Descent

Suppose the objective function f(z) has the following form

f(x) = g(z) + h(z) (8.3)

such that g(x) is convex and differentiable while h(x) is only convex but not necessarily differentiable. When
the function f(x) was differentiable we made quadratic approximation to f around x to get gradient descent
update. The update step is of the form z* = 2 — tV f(z) where 2T is the next value of z and ¢ is the step
size. To recap the quadratic approximation around x is

fl@) + V@) (z —z) + %(2 —2)"V2f(2)(z — ) (8.4)

1

To get to the gradient update step replace the V2 f(x) by n

I leading to the following approximation
1
o :argminf(x)—i—Vf(x)T(z—x)+E||z—x||2 (8.5)
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In the case when f is not differentiable but can be decomposed into sum of a convex differentiable function (g)
and a convex non-differentiable function (h) then g can still be approximated by a quadratic approximation
while h can be used as it is to get the following:-

1
= argming(e) + Vo) (z — ) + |1z — 2l +h(2)
1 2
= argmin (1= — al]? + 2V 9(@)" (= — 2) + 2| V() |?) + g(x) — 2[Vg@)]> + h(z)
= arg min2it||z —(z —tVg(2))||* + h(2) removing terms independent of z (8.6)

The effect of the above update scheme is two fold. The first term keeps the update as close to the gradient
update for g while the second term makes h small.

The above intuition leads to the following method for solving functions represented in 8.3.

1. Initialize 2(¥) € R™.

2. Let o7 = 2(b=1) — #;, Vg(z(+~1)
3. Define prox,(z) = arg min.epn o ||z — z||* + h(z). Then
k)

® = prox,, (z*)

The update step can also be made to look similar to the update step of gradient descent by writing it as

2(k) =z — 4Gy, (D) (8.7)
where G(x) is the generalized gradient and is given by

x — prox,(z — tVg(x))
t

Gi(x) =

Discussions

1. One optimization step has been replaced by another. So does this help? Yes since for a number of
important functions h the prox, can be computed analytically.

2. What if g is complicated? Note that the prox function does not depend on the function g. For the
update only the value of the gradient of ¢ is required.

8.2.1 ISTA

Lets consider a case when h(z) is L1 penalty on = ie h(z) = A||z||; where A > 0. Then the prox function is
defined as

.1 9
prox,(e) = arg min ol — 2% + A=l (.8)
= Sy(z) refer to lecture 7 slide 16

where Sy:(x) is the soft-thresholding operator.

J?i—)\ 1f$z>)\
[Sx(z)]i=14 O if - A<z >\
i\ ifa; < =
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8.2.1.1 LASSO
In lasso the objective function can be written as
1
f@) = 5ly—Azl* + Azl (8.9)
= g(x) + h(z)
Where g(z) = 3|ly — Az||?. Thus Vg(z) = —AT (y — Az). Hence the generalized gradient update is

T = Sy (x +tAT (y — Ax)) (8.10)

The resulting algorithm is faster than sub-gradient method as shown in the figure 8.1.
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Figure 8.1: ISTA vs subgradient decent

8.2.2 Convergencce Analysis
For f(z) = g(x) + h(zx), lets assume that

e ¢ is convex, differentiable, Vg is Lipshitz continuous with constant L > 0.

e h is convex, prox,(z) = arg 1rninz{HI;7tz”2 + h(z)} can be evaluated
Then the following holds

Theorem 8.1 Generalized gradient descent with fixed step size t < % satisfies

@ — a2

Fa®) - fat) < e

where x* is the optimal solution.

Discussions



8-4 Lecture 8: September 20

1. This has the same convergence rate O(1/k) as that of gradient descent but this counts the number of
iteration but not the number of operations.

2. Why does generalized gradient descent converge at O(1/k) where as subgradient converges at O(1/Vk).
It is because of the additional knowledge about Vg being Lipschitz continuous.

Proof: We begin by first showing that

L
Fy) < 9(2) + Vo@)"(y —2) + Sy —=” + h(y) Va,y
Since Vg is Lipschitz with constant L, V2g < LI, we have Vx,y
(=) (V?g(x) — LI)(z —y) <0

which implies that
Lllz =yl > (z — )" Vg(a)(z — y)

By Taylor’s expansion
o) = 9@) + Vo) (v~ o)+ 5@~ o) Vg(a)(e — )
< (@) + Vo) (g - 2)+ 5y — o
therefore
F(9) < 9l@) + V() (y — ) + Sy~ al* + hly) Va,y (1)

substituting y = 1 = 2 — tG(x) we have

F(e*) < 9(a) ~ V(@) Gule) + S [Gill? + bz 16y (@) (312)

Now

1
x —tGy(x) arg min 2—t||z — (z —tVg(@)||> + h(z)

1
= argmin V()" (z — x) + %Hz —z||? + h(z)

This implies that there exist a v € §h(z) such that at minima Vg(z) 4+ 1(z — ) + v = 0, but the minimum
occurs at z = x — tGy(x), thus

Vg(x) — Gi(x) +v =0, v € dh(x—1tGi(x))
= Gy(x) — Vg(z) € dh(z — tGy(x)) (8.13)

Since h is convex,

h(x) > h(z — tGy(z)) + (Gi(z) — Vg(x)) tGy ()
h(x — tGy(x)) < h(z) — t(G(x) — Vg(x))TGi(x) (8.14)

Substituting equation 8.14 in 8.12 we get

Fh) < f(@) ~ (1= 2)HGi(a) (3.15)
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Since f is convex, f(x) < f(a*) + Gi(x)T (x — 2*), substituting it above we get

f®) < f(x*)+Gt($)T(x—x*)—(1—%)tHGt(df)H2

< f(:r*)—i—Gt(x)T(x—ac*)—%HGt(x)Hz since t < 1/L
1
2t

F@*) + o (e — o™ = la* = 2*[) (8.16)

Summing over iterations we have

D (f@® = far) < %(me) — 2P = ™ —a*|?)
=1
L) =2
< %Hx — 2" (8.17)
Since the difference is non-increasing we have
1o . 1
fa®) = fa*) < 23 (f@D = f@7) < ol —a)? (8.18)
i=1
|

8.2.3 Backtracking Line Search

The procedure for back tracking is similar to gradient descent:

e Fix0< <1

e Then at each iteration start with ¢ = 1, and while
t
[z —tG(z)) = f(z) - §||Gzt(ﬂc)||2

update t = St

Theorem 8.2 Generalized gradient descent with backtracking line search satisfies
2 — a*||?

(k)Y _ *
J@®) = f@) < T5—

where tmi, = min{l, 5/L}

8.2.4 Example: Matrix Completion

Given matrix A, m X n, only some entries are observed A;;, (i,7) € €, the objective is to fill in the missing
entries. This can be used to predict user preferences such as user rating for unseen movies. The objective is
to

. 1
min -
XeRmxm 2

> (A — Xi)” + A X (8.19)

(,7)€Q
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where || X ||, is the nuclear norm of X and is given by

X1, = Y u(x)

where r = rank(X) and o; is the ith singular value.
To solve this first lets define a projection operator onto the observed set

[Po(X)]i; = { 0 otherwise

The objective is to minimize the following function
1
F(X) = 5 I1Pa(A) = Pa(X)|7 + A X

which has the same form as g(x) + h(z). Now projection function is convex and the Frobenius norm
is differentiable and convex and the nuclear norm is convex but not differentiable. Here we can apply
generalized gradient descent. The gradient is Vg(X) = —(Pq(A) — Po(X)) and the prox function is

1
X) = in —||X = Z|%+ M Z].
prox, (X) arg min 2t” 1= + Al Z]|

If we select prox,(X) = Z then Z should satisfy
0€Z—X+ X\.J0|Z]« (8.20)
Note that if Z = UXV7T then
8 Z) = {UVT + W : W e R™*" |W| < 1,U'W =0, WV = 0}

If we let Z = UX\ V7 then equation 8.20 holds, here X = UXV 7 is the SVD and X, is given by the diagonal
matrix

(Xx)s = max{X;; — A, 0}
This is true because X — Z = AUVT € §||Z||.. Thus the prox function can be written as
prox,(X) = Sy (X) = US\ VT
and the generalized gradient update step is
X* = Sn(X +t(Pa(A) - Po(X)))

since [|[Vg(Y) — Vg(X)|lr = |Pa(A) — Pa(X)||r < ||Y — X||F the Lipschitz constant is L = 1 thus the step
size can be picked as t = 1 leading to

Xt = S\(Pa(A) + X — Po(X)) = Sx(Pa(A) + Py (X))
where Po(X) + Po(X) = X This is called the soft-impute algorithm for matrix completion.
Discussions
1. Why is this method called ”generalized gradient descent”? Note that the function to be minimized
is f = g+ h and if we let h = 0 its equivalent to gradient descent, if we set ¢ = 0 its proximal

minimization algorithm and if we set h = I where I denotes projection onto a set then it becomes
projected gradient descent.

2. Since all the three methods are specific cases of this they have O(1/k) convergence rate.
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8.2.5 Projected Gradient Descent

The problem of minimizing over a closed convex (miniccg(x)) set can be shown to be equivalent to
mingg(x) + Ic(x) where

0 zel
lo(z) = { oo x¢C

The prox function for this problem is

1
proxi(z) = argmin 2—t||m — 2|2+ Ic(2)
_ : 2
= argmin |z — 2|
= Po(x) projection operator on C' (8.21)
Thus the update step is
2t = Po(x — tV(x))

which implies that it first performs the usual gradient update and then its projected onto the constrained
set as shown in the figure 8.2 below:-
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Figure 8.2: The gradient step may take the solution out of the set C' shown shaded. It is then projected
back on the set.

Some sets that are easy to project on are:-

Affine images C = {Az +b: 2 € R"}

Solution set of linear system C' = {x € R" : Ax = b}

Nonnegative orthant C' = {x inR" : x = 0}

Norm balls C = {z € R" : ||z||, < 1}, for p=1,2,00

Note that it may be hard to project on arbitrary polyhedron.
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8.2.6 Proximal Minimization

If g = 0 then the objective is just
min h(x)

and can be solved by using just the prox update

1
T = argmin %Hx — 2| 4+ h(2)

Note that if the prox function can not be solved in closed form then this method is not implementable.

Discussion

1. Generalized gradient descent assumes that the prox can be evaluated exactly.
2. There is in general no convergence guarantee if the prox fucntion cannot be calculated exactly.

3. There are some exceptions to this(eg. partial proximal minimization )

8.3 To be Covered in Next Lecture

In the next lecture we would deal with cutting edge first order methods that can achieve an optimal rate of
O(1/k?)
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