
10-725: Optimization Fall 2012

Lecture 7: September 18
Lecturer: Ryan Tibshirani Scribes: David Bamman, William Chan and Yanchuan Sim

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

7.1 Convergence analysis of subgradient descent

7.1.1 Class Questions

If there is more than one subgradient, which do you choose? It’s pretty rare (and difficult) to be
able to compute all subgradients and in many applications, we are only able to compute one. If there is
more than one subgradient, e.g., |x|, x ∈ [−1,+1]), an option is to take a random value between [−1,+1].
The theory we have, however, holds for all subgradients.

Backtracking for subgradients? The convergence of subgradients uses fixed stepsize rules. Step size
choices are not usually adaptive. Ryan: “people don’t use adaptive choices for subgradients as far as I
know”.

7.1.2 Quick Review

A subgradient of convex function f : Rn → R at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x)

Subgradients characterize optimality:

f(x∗) = min
x∈Rn

f(x)⇔ 0 ∈ ∂f(x∗)

Note: this is true even if f is non-convex, but often we can’t compute subgradients for non-convex (so moot
point).

Step size choices: we either take fixed step sizes or we take constants such that:

∞∑
k=1

t2k ≤ ∞

∞∑
k=1

tk =∞

For fixed step sizes, we have

lim
k→∞

f(x(k)
best) ≤ f(x∗) +

t

2
G2

7-1

7-2 Lecture 7: September 18

Note: We are guaranteed to be t
2G

2 away from the optimal point if we run the method to infinity.

For diminishing step sizes, we have:
lim
k→∞

f(x(k)
best) = f(x∗)

Note: We can guarantee that we reach the optimal point (after possibly an infinite amount of steps).

7.1.3 Convergence Rate

The question is, after k iterations, what is the error f(x(k)
best)− f(x∗)?

Consider taking ti = R
G
√
k

, all i = 1 . . . k. The basic bound is:

R2 +G2
∑k
i=1 t

2
i

2
∑k
i=1

=
RG√
k

This means the subgradient method has convergence rate O
(

1√
k

)
; to get f(x(k)

best) − f(x∗) ≤ ε, we need

O
(

1√
ε2

)
iterations.

This is actually the best we can do; e.g., we can’t get do better than O(1√
k

).

7.2 Subgradients and Alternating Projections

Using the problem of finding a point in the intersection of convex sets as an example, we derive the alternating
projections algorithm using subgradients.

7.2.1 Intersection of sets

Problem: Given m closed convex sets C1, C2, . . . , Cm, we want to find x∗ ∈
⋂m
i Ci.

First, we define
f(x) = max

i=1,...,m
dist(x,Ci)

where
dist(x,C) = min

u∈C
‖x− u‖

is the closest we can get to x if we have to stay in the set C.

Also,

f(x∗) = 0 ⇐⇒ x∗ ∈
m⋂
i

Ci

Therefore, the optimization problem is to minimize

min
x∈Rn

f(x)

which, when equal to 0 is the point we are looking for.

Lecture 7: September 18 7-3

Since C is closed and convex, there is a unique point u∗ = PC(x). This unique point is the projection of x
onto C, and it minimizes ‖x− u‖ over u ∈ C. We can thus write

dist(x,C) = ‖x− PC(x)‖

7.2.2 Finding subgradient of fi

We want to calculate the subgradient of f because if we can do so, we can apply subgradient methods and
obtain an algorithm to solve our problem.

First, we consider fi(x) of Ci. It turns out that fi(x) is differentiable (but not discussed in class). For each
i, if we take a point not in Ci, i.e x /∈ Ci and ‖x− PC(x)‖ 6= 0, it turns out that

x− PC(x)
‖x− PC(x)‖

(7.1)

is a subgradient of fi(x). We obtain this by just taking the projected point and finding the gradient without
the chain rule.

Now we are going to show that (7.1) is a subgradient of fi at x. By the definition of the projected point
u = PC(x),

(x− u)T (y − u) ≤ 0

for all y ∈ C. To find u, we are actually minimizing,

min
u∈C

1
2
‖x− u‖2

We can remove the constraints by using the indicator function,

min
1
2
‖x− u‖2 + IC(x)

Differentiating that and setting it to 0, we get

0 ∈ (u− x) +NC(u)
⇒x− u ∈ NC(u)

⇒(x− u)Tu ≥ (x− u)T y ∀y ∈ C (7.2)

⇒(x− u)T (y − u) ≤ 0

Equation (7.2) follows from the properties of the normal cone.

We can say that C is contained in the halfspace

C ⊆ H = {y : (x− u)T (y − u) ≤ 0}

and we claim that

dist(y, C) ≥ (x− u)T (y − u)
‖x− u‖

∀y

7-4 Lecture 7: September 18

When y ∈ H, the RHS ≤ 0 by definition of the halfspace. When y /∈ H,

dist(y,H) = ‖y − u‖ sinφ

=
‖x− u‖‖y − u‖ sinφ

‖x− u‖

=
(x− u)T (y − u)
‖x− u‖

≤ dist(y, C)

because C is contained in H.

Now we have proved this inequality, we can rewrite it as

dist(y, C) ≥ (x− u)T (y − x+ x− u)
‖x− u‖

= ‖x− u‖+
(x− u)T

‖x− u‖
(y − x)

Hence, the term
(x− u)T

‖x− u‖
, which is what we had in (7.1), is a subgradient of dist(x,C).

7.2.3 Finding subgradients of f

Using a rule we learnt from earlier on in the course, if

f(x) = max
i=1,...,m

fi(x)

then,

∂f(x) = conv

 ⋃
j:fj(x)=f(x)

∂fj(x)


What this means is that the subgradient of f(x) is equal to the convex hull of the union of all maximal
fj(x)’s, and take the respective subdifferentials.

If fi(x) = f(x) 6= 0 (when it is 0, we are done), then

x− PC(x)
‖x− PC(x)‖

∈ ∂f(x)

This gives us a prescription for finding the subgradients.

7.2.4 Subgradient descent

We will use a particular stepsize, known as the Polyak stepsize, because this particular choice will give us
a famous algorithm that is a special case of the subgradient method. For the purpose of illustration, the
Polyak stepsize is

tk = f(x(k−1))

Lecture 7: September 18 7-5

and the subgradient descent update rule is

x(k) = x(k−1) − tk∂f(x(k−1))

= x(k−1) − f(x(k−1))
x− PCi

(x)
‖x− PCi(x)‖

where x(k−1) is farthest from Ci

= x(k−1) − x(k−1) + PCi
(x)

= PCi
(x)

So the update rule is just to take x(k−1) and project it to the set it is farthest from.

This is also known as the alternating projections algorithm. By using the subgradient method, we can now
use what we know about subgradients to say things about the alternating projections algorithm (such as
convergence rate and guarantees, etc).

Figure 7.1: Alternating Projection from Boyd Notes

7.3 Nesterov’s Theorem

Theorem 7.1 Nesterov’s Theorem: For any k ≤ n − 1 and starting point x(0), there is a function in the
problem class such that any nonsmooth first-order method satisfies

f(x(k))− f(x∗) ≥ RG

2(1 +
√
k + 1)

Proof: Let k = n− 1 and x(0) = 0.
f(x) = max

i=1...n
xi +

1
2
||x||2

The optimal x∗ here = (−1/n, . . . ,−1/n), with the optimal function value f(x∗) = − 1
2n . If R = 1√

n
, then f

is Lipschitz with G = 1 + 1√
n

.

7-6 Lecture 7: September 18

Claim: At any iteration i from 1 to n, all of the elements of x from xi+1 to xn are 0. To show this, let us
assume we have some oracle that gives us g = ej + x, where j is the smallest index of x’s maximum value,
xj . ej is the basis vector:

e1 = (1, 0, 0, 0)
e2 = (0, 1, 0, 0)
· · ·

At iteration 1, g = e1 + x (since x has only one nonzero value, located at element 1); From this we can see
that span{g(0), g(1)} ⊆ span{e1, e2}. In general

span{g(0), g(1)} ⊆ span{e1, e2}
span{g(0), g(1), g(2)} ⊆ span{e1, e2, e3}

span{g(0), g(1), g(2), g(3)} ⊆ span{e1, e2, e3, e4}

Therefore, f(xn−1) ≥ 0. Since we know that the optimal function value is − 1
2n

f(xn−1)− f(x∗) ≥ 1
2n

=
RG

2(1 +
√
n)

References

[Nesterov04] Y. Nesterov (2004), Introductory Lectures on Convex Optimization: A Basic Course,
Kluwer Academic Publishers.

