10-725: Optimization Fall 2012

Lecture 21: November 8
Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Martin Azizyan, Dwijaya Wijaya

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

21.1 Maximum variance unfolding

Maximum variance unfolding (MVU, a.k.a. semidefinite embedding) is yet another example of a problem
that can be expressed as a semidefinite program. The goal of maximum variance unfolding is as follows:
given x1,...,x7 € R, find y1,...,yr € R* (k < n) such that |ly; — y;|| = ||x; — x;]| for (4,7) € E for some
given edge set F.

MVU reduces to PCA if E contains all pairs of points, i.e. when we are trying to preserve all distances.
However, PCA only has a good solution (i.e. one that preserves distances well) when z; lie near a k-
dimensional subspace of R".

If we constrain F to contain e.g. only pairs of nearby points, then maximum variance unfolding finds a non-
linear embedding of the points, meaning that we can preserve the local geometry of non-linear manifolds.
For instance, the data in Figure 21.1 can be viewed as a 1 dimensional manifold embedded in R?, and finding
the maximum variance unfolding with £ = 1 would map the data points to some interval in R.

Maximum variance unfolding will proceed in two steps:

e First, we find z1, ...,z € R™ with
2 —z;|| = [Ix; — x;]| V(i,j) € E
and var(z) as large as possible.

e Next, we use PCA to get y; from z;.

In essence, we maximize the variance of z; in order to “stretch out” the manifold so that it is nearly linear.
As we will see, this step is a semidefinite program.

Precisely, the optimization problem in the first step above is:
max tr(cov(z))
z
stz — 25l = [[xi — x5 V(i,j) € E.

(Note that tr(cov(z)) = + 23;1 |z; — Z||?, where z = £ ZZ;I Zi).

21.1.1 MVU as a semidefinite program

In order to show that this is a semidefinite program, we transform the problem as follows. Define X =
(X1,X2,....x7) € RVT Z = (21,29,...,27) € RT P = XTX, and Q = Z"Z. Our new optimization

21-1

21-2 Lecture 21: November 8

Figure 21.1: A non-linear manifold with neighborhood graph.

variable will be Q (subject to Q = 0, in order to be a valid matrix of inner products). We will recover
an equivalent embedding Z by factoring Q (e.g. using a Cholesky decomposition). We now express the
objectives and constraints in terms of Q.

Consider the constraint
z: — 2| = [Ixi — x;||.

Squaring both sides and expanding the norms, we obtain the equivalent constraint
7!z — 2lezj + zfzj =xI'x; — 2xlij + x?xj.
We can easily rewrite this in terms of the matrices P and Q; the equality constraints are now
Qi —2Q;; +Qj; =P;; —2P;; + P;; V(i,j) € E
which are linear constraints, so, together with the constraint Q > 0, we still have semidefinite constraints.

Now we derive an expression for tr(cov(z)) in terms of Q:

and the trace is

1 1
tr(cov(z)) = Ttr(ZZT) - ﬁtr(leTZT)

1
= —tr(Z'Z) — ﬁmr(szuT)

1
= 7tr(Q) - ﬁtr(QllT).

Lecture 21: November 8 21-3

So the full SDP is

T
Q>=0.

1 1
m(g,x —tr(Q) — ﬁtr(QllT)

21.2 Duality for quadratic programs (QPs) and cone programs
(CPs)

Consider a quadratic cone program:

1
min ¢’x + ixTHx
st. Ax+be K
x €L

where cones K and L encode all equality, inequality, and generalized inequality constraints. We assume K
and L are closed and convex. This is just a cone program if H = 0, and a quadratic program if e.g. K and
L are the non-negative orthants.

Let y € K* and s € L*. By definition, y? (Ax +b) > 0 and s”x > 0. Then
T L 7 T Lo T T
c x+§x Hx>c x+§x Hx -y (Ax+b)—s"x
1
> minc’z + §ZTHZ —y'(Az+b) —sTz.

We can compute the minimum in the last line above by differentiating w.r.t. z and setting the gradient of
the quadratic to 0:

0=c+Hz—- ATy —s

i.e.
Hz=s+ATy—c

which is going to be a constraint in the dual program. Substituting this back into the inequality above,
T L 7 T T L r T
c x+§x Hx > (c— A’y —s) z—|—§z Hz—-y'b
1
= —izTHz —yvTb

and the dual program is (scribe’s note: I'm not sure if the following optimization problem should be with
respect to z as well)

;nsa;{ — %ZTHz—yTb
st. 0=c+Hz—- ATy —s
selL”
ye K"

21-4 Lecture 21: November 8

We can eliminate the variable s by rewriting the first constraint as s = ¢+ Hz — ATy and combining it with
the second constraint, so the dual program becomes

1
max — -z ' Hz—y’b
y.z 2

st. Hz+c— ATy e L*
y € K*.

21.2.1 KKT conditions
Recall the primal and dual quadratic cone problems:

1
min ¢’x + —x'Hx
x 2

st. Ax+beK
x €L

1
max — -z Hz—y’b
vz 2

st. Hz4+c— ATy e L*
y € K*.

The primal feasibility conditions are
Ax+be K and xelL.
The dual feasibility conditions are
Hz+c—AlyeL* and yeK*.

The last set of constraints is equality of the primal and dual objective values:

1 1
cTx+ §XTHX = —§ZTHZ —yTb.

We will now transform this into a more interpretable form.

First, we rewrite the constraint as

1 1
§XTHX + izTHz +cfx+y'b=0.

We would like to “complete the square”, i.e. combine the quadratic terms into a single term %(X—Z)TH(X—Z)7
so we add and subtract x! Hz from the left hand side:

1
—(x—2z)TH(x—2)+x"Hz+c'x+y'b=0.
2

By also adding and subtracting x” ATy and collecting some terms, we obtain the form

1
§(X —2)TH(x —2)+ (Ax +b) 'y +xT(c + Hz — ATy) = 0.

Lecture 21: November 8 21-5

Observe that % (x — z)"H(x — z) > 0 since it is a PSD quadratic term, (Ax + b)Ty > 0 since Ax +b € K
andy € K*, and x”(c + Hz — ATy) > 0 since x € L and ¢+ Hz — ATy € L*. Hence, all three terms must
equal 0, and the full set of KKT conditions are:

Ax+be K and x€ L (primal feasibility),

Hz+c—AlycL* and yec K* (dual feasibility),
(Ax+b)'y=0 and x"(c+Hz—- ATy)=0 (comp. slackness),
Hx = Hz.

21.2.2 Support Vector Machines (Separable Case)

This is one of the most important quadratic problems in Machine Learning, where duality makes a big
difference, where in some problems it is much easier to solve the dual than the primal or vice versa; depending
on the relative size of the dimensionality of the problem and number of examples.

SVM is a classification problem. Assuming separable case, where we can classify the data without errors,
the task is to find a classification surface that separates the positive from negative data points.

Given x; € R™ and y; € {—1,1}, the classification surface can be expressed as wx — b = 0, where w is a
vector in the direction of the normal to the classification surface and b controls the intersect.

If particular if we define w = ﬁ and b = HTbH’ w will be a unit vector in the direction of the normal (i.e.

orthogonal to the classification surface), and the b will be the distance along the direction of the normal,
from the origin to the classification surface (Figure 21.2).

O Support vectors:
Points that exactly
lie on the margin

origin

Figure 21.2: SVM

In SVM, we are concerned about the margin by which we separate the positive from negative examples. The
margin for the i*" example is defined as M; = y; (Wxi — B), which is the distance along the direction of
the normal, from the point x; to the classification surface. The problem is then to find the hyperplane that
separates the data points with maximum possible margin:

21-6 Lecture 21: November 8

max M

st. M <y, (WXi — B) Vi

But this optimization problem does not have a convex constraint (due to W that is constrained to be in a
unit sphere that is not a convex constraint). Defining v = ¥ and d = &, we have W = Mv, b = Md, and

|v|| = 35. Hence the optimization problem can be rewritten as:
1
max —-
Ial

st. 1 <y;(vx; —d) Vi

But this has non convex objective. Since ﬁ is monotone decreasing in ||v|| and ||v||” is monotone increasing

in ||v]|, making a monotone transformation of the objective function:

min ||v||?
st. 1 <y;(vx; —d) Vi

which is a quadratic program of convex objective and linear constraints.

For non separable case, we can introduce slack variables s; > 0 in the optimization problem:

min ||v|*+ C Zsi
i
st. 1—s; <y;(vx; —d) Vi
Depending on the value of C, we trade-off between making the margin as wide as possible versus making

as few mistakes (i.e. low slacks) as possible. To make slacks vector sparse (few mistakes), tricks such as
L1-penalty on the vector are used.

