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21.1 Maximum variance unfolding

Maximum variance unfolding (MVU, a.k.a. semidefinite embedding) is yet another example of a problem
that can be expressed as a semidefinite program. The goal of maximum variance unfolding is as follows:
given x1,...,x7 € R, find y1,...,yr € R* (k < n) such that |ly; — y;|| = ||x; — x;]| for (4,7) € E for some
given edge set F.

MVU reduces to PCA if E contains all pairs of points, i.e. when we are trying to preserve all distances.
However, PCA only has a good solution (i.e. one that preserves distances well) when z; lie near a k-
dimensional subspace of R".

If we constrain F to contain e.g. only pairs of nearby points, then maximum variance unfolding finds a non-
linear embedding of the points, meaning that we can preserve the local geometry of non-linear manifolds.
For instance, the data in Figure 21.1 can be viewed as a 1 dimensional manifold embedded in R?, and finding
the maximum variance unfolding with £ = 1 would map the data points to some interval in R.

Maximum variance unfolding will proceed in two steps:

e First, we find z1, ...,z € R™ with
2 —z;|| = [Ix; — x;]| V(i,j) € E
and var(z) as large as possible.

e Next, we use PCA to get y; from z;.

In essence, we maximize the variance of z; in order to “stretch out” the manifold so that it is nearly linear.
As we will see, this step is a semidefinite program.

Precisely, the optimization problem in the first step above is:
max tr(cov(z))
z
stz — 25l = [[xi — x5 V(i,j) € E.

(Note that tr(cov(z)) = + 23;1 |z; — Z||?, where z = £ ZZ;I Zi).

21.1.1 MVU as a semidefinite program

In order to show that this is a semidefinite program, we transform the problem as follows. Define X =
(X1,X2,....x7) € RVT Z = (21,29,...,27) € RT P = XTX, and Q = Z"Z. Our new optimization
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Figure 21.1: A non-linear manifold with neighborhood graph.

variable will be Q (subject to Q = 0, in order to be a valid matrix of inner products). We will recover
an equivalent embedding Z by factoring Q (e.g. using a Cholesky decomposition). We now express the
objectives and constraints in terms of Q.

Consider the constraint
z: — 2| = [Ixi — x;||.

Squaring both sides and expanding the norms, we obtain the equivalent constraint
7!z — 2lezj + zfzj =xI'x; — 2xlij + x?xj.
We can easily rewrite this in terms of the matrices P and Q; the equality constraints are now
Qi —2Q;; +Qj; =P;; —2P;; + P;; V(i,j) € E
which are linear constraints, so, together with the constraint Q > 0, we still have semidefinite constraints.

Now we derive an expression for tr(cov(z)) in terms of Q:

and the trace is

1 1
tr(cov(z)) = Ttr(ZZT) - ﬁtr(leTZT)

1
= —tr(Z'Z) — ﬁmr(szuT)

1
= 7tr(Q) - ﬁtr(QllT).
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So the full SDP is

T
Q>=0.

1 1
m(g,x —tr(Q) — ﬁtr(QllT)

21.2 Duality for quadratic programs (QPs) and cone programs
(CPs)

Consider a quadratic cone program:

1
min ¢’x + ixTHx
st. Ax+be K
x €L

where cones K and L encode all equality, inequality, and generalized inequality constraints. We assume K
and L are closed and convex. This is just a cone program if H = 0, and a quadratic program if e.g. K and
L are the non-negative orthants.

Let y € K* and s € L*. By definition, y? (Ax +b) > 0 and s”x > 0. Then
T L 7 T Lo T T
c x+§x Hx>c x+§x Hx -y (Ax+b)—s"x
1
> minc’z + §ZTHZ —y'(Az+b) —sTz.

We can compute the minimum in the last line above by differentiating w.r.t. z and setting the gradient of
the quadratic to 0:

0=c+Hz—- ATy —s

i.e.
Hz=s+ATy—c

which is going to be a constraint in the dual program. Substituting this back into the inequality above,
T L 7 T T L r T
c x+§x Hx > (c— A’y —s) z—|—§z Hz—-y'b
1
= —izTHz —yvTb

and the dual program is (scribe’s note: I'm not sure if the following optimization problem should be with
respect to z as well)

;nsa;{ — %ZTHz—yTb
st. 0=c+Hz—- ATy —s
selL”
ye K"
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We can eliminate the variable s by rewriting the first constraint as s = ¢+ Hz — ATy and combining it with
the second constraint, so the dual program becomes

1
max — -z ' Hz—y’b
y.z 2

st. Hz+c— ATy e L*
y € K*.

21.2.1 KKT conditions
Recall the primal and dual quadratic cone problems:

1
min ¢’x + —x'Hx
x 2

st. Ax+beK
x €L

1
max — -z Hz—y’b
vz 2

st. Hz4+c— ATy e L*
y € K*.

The primal feasibility conditions are
Ax+be K and xelL.
The dual feasibility conditions are
Hz+c—AlyeL* and yeK*.

The last set of constraints is equality of the primal and dual objective values:

1 1
cTx+ §XTHX = —§ZTHZ —yTb.

We will now transform this into a more interpretable form.

First, we rewrite the constraint as

1 1
§XTHX + izTHz +cfx+y'b=0.

We would like to “complete the square”, i.e. combine the quadratic terms into a single term %(X—Z)TH(X—Z)7
so we add and subtract x! Hz from the left hand side:

1
—(x—2z)TH(x—2)+x"Hz+c'x+y'b=0.
2

By also adding and subtracting x” ATy and collecting some terms, we obtain the form

1
§(X —2)TH(x —2)+ (Ax +b) 'y +xT(c + Hz — ATy) = 0.
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Observe that % (x — z)"H(x — z) > 0 since it is a PSD quadratic term, (Ax + b)Ty > 0 since Ax +b € K
andy € K*, and x”(c + Hz — ATy) > 0 since x € L and ¢+ Hz — ATy € L*. Hence, all three terms must
equal 0, and the full set of KKT conditions are:

Ax+be K and x€ L (primal feasibility),

Hz+c—AlycL* and yec K* (dual feasibility),
(Ax+b)'y=0 and x"(c+Hz—- ATy)=0 (comp. slackness),
Hx = Hz.

21.2.2 Support Vector Machines (Separable Case)

This is one of the most important quadratic problems in Machine Learning, where duality makes a big
difference, where in some problems it is much easier to solve the dual than the primal or vice versa; depending
on the relative size of the dimensionality of the problem and number of examples.

SVM is a classification problem. Assuming separable case, where we can classify the data without errors,
the task is to find a classification surface that separates the positive from negative data points.

Given x; € R™ and y; € {—1,1}, the classification surface can be expressed as wx — b = 0, where w is a
vector in the direction of the normal to the classification surface and b controls the intersect.

If particular if we define w = ﬁ and b = HTbH’ w will be a unit vector in the direction of the normal (i.e.

orthogonal to the classification surface), and the b will be the distance along the direction of the normal,
from the origin to the classification surface (Figure 21.2).

O Support vectors:
Points that exactly
lie on the margin

origin

Figure 21.2: SVM

In SVM, we are concerned about the margin by which we separate the positive from negative examples. The
margin for the i*" example is defined as M; = y; (Wxi — B), which is the distance along the direction of
the normal, from the point x; to the classification surface. The problem is then to find the hyperplane that
separates the data points with maximum possible margin:
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max M

st. M <y, (WXi — B) Vi

But this optimization problem does not have a convex constraint (due to W that is constrained to be in a
unit sphere that is not a convex constraint). Defining v = ¥ and d = &, we have W = Mv, b = Md, and

|v|| = 35. Hence the optimization problem can be rewritten as:
1
max —-
Ial

st. 1 <y;(vx; —d) Vi

But this has non convex objective. Since ﬁ is monotone decreasing in ||v|| and ||v||” is monotone increasing

in ||v]|, making a monotone transformation of the objective function:

min ||v||?
st. 1 <y;(vx; —d) Vi

which is a quadratic program of convex objective and linear constraints.

For non separable case, we can introduce slack variables s; > 0 in the optimization problem:

min ||v|*+ C Zsi
i
st. 1—s; <y;(vx; —d) Vi
Depending on the value of C, we trade-off between making the margin as wide as possible versus making

as few mistakes (i.e. low slacks) as possible. To make slacks vector sparse (few mistakes), tricks such as
L1-penalty on the vector are used.



