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19.1 ADMM

19.1.1 Dual (Decomposition) Ascend

Consider solving the following problem

min
x
f(x) s.t. Ax = b (19.1)

We know its Lagrangian form is
L(x, u) = f(x) + uT (Ax− b) (19.2)

and the Lagrange dual function is
g(u) = inf

x
L(x, u). (19.3)

So the dual problem of (19.2) is
max
u

g(u). (19.4)

A natural way to solve (19.4) is using subgradient ascent. Given u, assume x+ minimizes L(x, u), then the
subgradient is ∂g(u) = Ax+ − b. Choosing learning rate sequence η1, . . . ,, the subgradient ascent is defined
as following:

For time t = 1, . . .,

xt+1 = arg min
x
L(x, ut) (19.5)

ut+1 = ut + ηt(Axt+1 − b) (19.6)

If strongly duality holds, and u∗ is the optimal solution of the dual problem (19.4), then the optimal primal
point can be computed as x∗ = arg minx L(x, u∗).

For appropriate learning rate ηt and under certain conditions, xt, ut converge to optimal primal and dual
points, respectively. However, when g is not differentiable, we cannot assure the ascent of the dual objective
value for each iteration, namely g(ut+1) � g(ut).

Now assume the objective function f(x) is decomposable, that is, it can be written as f(x) =
∑
i fi(xi),

where xi ∈ Rni are disjoint sets subject to x = {x1, . . . , xN}. Denote by Ax =
∑
iAixi, we rewrite the

Lagrange form (19.2) as

L(x, u) =
∑
i

Li(xi, u) =
∑
i

(
fi(xi) + uTAixi −

1

N
uT b

)
(19.7)
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For fixed u, (19.7) consists of N independent components, which can be optimized simultaneously. So the
dual ascent algorithm turns to be

xt+1
i = arg min

xi

Li(xi, u
t) for i = 1, . . . , N (19.8)

ut+1 = ut + ηt(Axt+1 − b) (19.9)

Comparing to (19.5), which minimize L on the whole x, now we solve N smaller problems.

19.1.2 Augmented Lagrangian

Augmented Lagrangian explicitly adds an additional strictly convex term to make the problem easier for
solving. Choose ρ > 0, it has the form:

Lρ(x, u) = f(x) + uT (Ax− b) +
ρ

2
‖Ax− b‖22. (19.10)

The additional term equals to 0 at the optimal point x∗, since we have Ax∗ = b. So it does not affect the
result.

Now the associated dual function is
gρ(u) = min

x
Lρ(x, u), (19.11)

and the dual ascent comes to

xt+1 = arg min
x
Lρ(x, u

t) (19.12)

ut+1 = ut + ρ(Axt+1 − b) (19.13)

Easy to see Lρ(x, u) is strictly convex with respect to x, even though it is not true for the original L(x, u).
However, ‖Ax− b‖22 cannot be decomposed as a serial of functions on xi, so the decomposition trick we used
before cannot be applied here.

19.1.3 ADMM

ADMM extends the decomposition idea to augmented Lagrangian. It iteratively solves a smaller problem
with respect to xi by fix the variable xj for j 6= i. We consider the case N = 2 for simplicity; it can be easily
extend to general N . Now f(x) has form f(x) = f1(x1) + f2(x2) and the augmented Lagrangian is

Lρ(x1, x2, u) = f1(x1) + f2(x2) + uT (A1x1 +A2x2 − b) +
ρ

2
‖A1x1 +A2x2 − b‖22. (19.14)

ADMM solves each direction alternatively

xt+1
1 = arg min

x1

Lρ(x1, x
t
2, u

t) (19.15)

xt+1
2 = arg min

x2

Lρ(x
t+1
1 , x2, u

t) (19.16)

ut+1 = ut + ρ(A1x
t+1
1 +A2x

t+1
2 − b) (19.17)

On the first step, we fix x2 and u by values on the last iteration and obtain a new x1 by solving the smaller
problem with respect to only x1. Next we use the new x1 to obtain new x2. Finally we update the dual
variable u. Different to the dual decomposition ascent, ADMM updates xi sequentially. The reason is
that the additional augment term makes we can not decompose the Lagrangian form into N conditionally
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independent components (conditioned on u) as we did on (19.7). So solving step 1 and 2 simultaneously may
give different results than solving it sequentially. The latter strategy using the most up-to-date information
about xi potentially accelerates the convergence.

Given assumptions:

1. Function f1, f2 are closed, proper, and convex (which means their according epigraphs are closed,
nonempty, and convex)

2. The un-augmented Lagrangian L0(x1, x2, u) has saddle points xS1 , x
S
2 and uS subject to

L0(xS1 , x
S
2 , u) ≤ L0(xS1 , x

S
2 , u

S) ≤ L0(x1, x2, u
S) (19.18)

Then when t→∞, we have

Residual convergence: rt = A1x
t
1 +A2x

t
2 − b→ 0

Objective convergence: f1(xt1) + f2(xt2)→ f∗

Dual variable convergence: ut → u∗

For the proof, please refer to [BPCPE10]. Note that we cannot assure the convergence of the primal variables
without further assumptions. As for non-strictly convex f(x), though there is unique optimal values f∗, the
solution x∗ is not necessary unique.

Finally we gives an example on how to apply ADMM. Consider the generalized Lasso with repeated ridge:

min
x

1

2
‖Ax− b‖22 + λ‖Fx‖1. (19.19)

F can be arbitrary form, for example, let

F =


1 −1

1 −1
· · ·
−1 1

 , (19.20)

the regularizer has the form
∑
i |xi − xi+1|, which makes the adjacent pair (xi, xi+1) be similar. Rewrite

(19.19) as a constraint problem

min
x

1

2
‖Ax− b‖22 + λ‖z‖1 s.t. Fx− z = 0. (19.21)

The augmented Lagrangian form is

L(x, z, u) =
1

2
‖Ax− b‖22 + λ‖z‖1 + ρuT (Fx− z) +

ρ

2
‖Fx− z‖22, (19.22)

where we add a scalar ρ before u to make things simple without affecting the results. First we solve
xt+1 = arg minx L(x, zt, ut), it’s a quadratic function about x and has the following closed form solution

xt+1 =
(
ATA+ ρFTF

)−1 (
AT b+ ρFT (zt − ut)

)
. (19.23)

Next calculate zt+1 = arg minz L(xt+1, z, ut), it is a soft-shrinkage problem whose solution is also of closed
form:

zt+1 = Sλ/ρ(Fx
t+1 + ut), (19.24)
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where the soft-shrinkage operator is defined as Sκ(a) =
(

1− κ
‖a‖2

)
+
a and (·)+ is the positive part. Finally

we update u by ut+1 = ut + Fxt+1 − zt+1.

Solving the original problem (19.19) directly is not easy. By dividing it into two components, we can solve
each one with closed form solution. ADMM decomposes complex optimization function elegantly and can
be extend to distributed version easily. It converges fast at the early stage, but requires a large number of
iterations for high precision solution.

19.2 Mirror Descent

Mirror Descent (MD) is a descent method just like Gradient Descent (GD). MD is better than GD when in
high dimension. Say if the dataset is in n-dimensional, MD scales well with n, better than GD.

19.2.1 Bergman Divergence

1. When we say a function g is strongly (or λ-strongly) convex wrt norm ||.||, we mean:

g(y) ≥ g(x) +∇gTx (y − x) +
λ

2
||y − x||2 (19.25)

For example, if function g is strongly convex wrt norm ||.||2,then that means:

g(y) ≥ g(x) +∇gTx (y − x) +
λ

2
||y − x||22 (19.26)

2. If a function g is strongly convex wrt norm ||.||, we define Bregman Divergence ∆g to be:

∆g(x, y) = g(x)− [g(y) +∇g(y)T (x− y)] (19.27)

3. ∆g is the distance between x and y as meansured by function g

4. Eg 1: g(x) = |||x||22 was strongly convex wrt ||.||2,

∆g(x, y) = ||x− y||2x (19.28)

5. Eg 2: g(x) =
∑
i(xilogxi − xi) strong ly convex wrt ||.||1,

∆g(x, y) =
∑
i

(xilog(
xi
yi

) + yi − xi) (19.29)

• g(x) is unromalized entropy.
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• This result form should remind you of KL divergence.

6. Some properites of Bregman Divergence.

(a) By definition, ∆g(x, x) = 0

(b) By definition (19.27), and by (19.25), ∆g(x, y) geλ2
2 ≥ 0

(c) When we take the derivatives of (19.25), we have:

∇x∆g(x, y) = ∇g(x)−∇g(y) (19.30)

∇2
x∆g(x, y) = ∇2g(x) � λI (19.31)

(d) Triangle Inequality (kinda):

∆g(x, y) + ∆g(y, z) = ∆g(x, z) + (∇g(z)−∇g(y))T (x− y) (19.32)

19.2.2 Mirror Descent - Updates

Remarks: MD is same to GD, just use a different distance meansure (Bregman).

1. In Gradient Descent, we minimize quadratic approx. of f at xt(Ht = I)

xt+1 = argminxf(xt) + ∂f(xt)T (x− xt) +
1

2
||x− xt||22 (19.33)

2. In Mirror Descent, instead of using 1
2 ||x − x

t||22, we use Bergman Divergence. Gvien a norm ||.|| over
the domain S,

xt+1 = argminxf(xt) + ∂f(xt)T (x− xt) +∇g(x, xt) (19.34)

where g is strongly convex wrt ||x||.

3. Alternatively,

xt+1 = arg min
x

f(xt) + ∂f(xt)T (x− xt) +∇g(x, xt) (19.35)

= arg min
x

f(xt) + ∂f(xt)T (x− xt) + g(x)− g(xt)−∇g(xt)T (x− xt) (19.36)

= arg min
x �

��f(xt) + ∂f(xt)T (x ��−xt) + g(x)−���g(xt)−∇g(xt)T (x ��−xt) (19.37)

= arg min
x

∂f(xt)Tx+ g(x)−∇g(xt)Tx (19.38)

= arg min
x

xT (∂f(xt)−∇g(xt)) + g(x) (19.39)

In some literature, you will actually see the updating in this form.

4. If we take the derivative of (19.39) wrt x, we have,

∂f(xt)−∇g(xt) +∇g(xt) = 0 (19.40)

5. Sometimes, we see people write xt+1 = ∇g−1(..), that is because we can rearrange (19.40),

∇g(xt) = ∇g(xt)− ηt∂f(xt) (19.41)

Hence,
xt+1 = ∇g−1(∇g(xt)− ηt∂f(xt)) (19.42)
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6. Another way people describe Mirror Descent is draw some diagram like this:

• Start from xt in the Primal space, you take gradient of g, and got ∇g(xt) in Dual space.

• Then in the Dual spece, you take a step, in the direction of −ηt∂f(xt).

• Then you take a inverse step, ∇g−1, and got your x(t+ 1) in the Primal space.

• Somehow I see a mirror here between Primal and Dual spaces ...

19.2.3 Convergence Guarantees

1. Let ||∂f(x)||∗ ≤ L||x||. We say that function f is in Lipshits L, and here L is the Lipshits constant.
For different norms ||.||, we should have different L (L||.||). Equivalently,

f(x)− f(y) ≤ L||.||||x− y|| (19.43)

2. Let xg = arg minx∈S g(x). You can imagine xg being some kind of center of set S.

Let diameter Dg,||.|| =
√

2 maxy ∆g(xg, y)/κ, then

||x− xg|| ≤ Dg,||.|| (19.44)

3. Chooing ηt =
λDg,||.||

||∂f(xt)||∗
√
T

,

f(xT )− f(x∗) ≤
L||.||Dg,||.||√

T
(19.45)

4. The above (19.45) is a very generalized form. For the case of ||.||2 norm, you will get what is similar
to the form from HW2 (via regret) for projected subgradient descent.

f(xT )− f(x∗) ≤ L2D2√
T

(19.46)

where both L2f, S and D2S depends on set S

• L2 =
√

maxx ||∂f(x)||22
• D2 =

√
maxx,y ||x− y||22
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19.2.4 Convergence Example: Probability Simplex and ||.||1

1. for n-dimensional simplex: x ≥ 0, 1Tx = 1

2. Functions are Lipschitz wrt ||.||1: maxx||∂f(x)||inf ≤ L1

This is actually a very week condition (subgradient bounded in infinity norm by L1), allowing very
large subgradient.

3. We choose g to be this (kind of) unnormalized entropy (sum of xi is 1):

g(x) =
∑
i

xilogxi − xi (19.47)

The updating is like this, what we call exponentiated gradient:

xt+1 = xt ◦ exp(−ηt∇f(xt)) (19.48)

This is because:

g(x) =
∑
i

xi log xi − xi (19.49)

∇g(x) = log x (log applied element-wise) (19.50)

∇g−1(x) = exp(x) (element-wise) (19.51)

∇g(xt+1) = ∇g(xt)− ηt∇f(xt) (updating in Dual space) (19.52)

log(xt+1) = log(xt)− ηt∇f(xt) (19.53)

xt+1 = exp(log(xt)− ηt∇f(xt)) (19.54)

xt+1 = xt ◦ exp(−ηt∇f(xt)) (19.55)

4. Diameter Dg,||.|| ≤
√

2 log n, yielding a rate
√

log n/T

5. Suppose you use gradient descent, with g(x) = ||x||22. Then

• Then the diameter bound in L2 norm is D2 = 1;

• the Lipschitz bound in L2 norm is L2 ≤
√
nL1.

• Put them together you get a rate of
√
n/T .
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