10-725: Optimization Fall 2012

Lecture 19: October 30
Lecturer: Aaditya Ramdas Scribes: Mu Li, Minli Xu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

19.1 ADMM

19.1.1 Dual (Decomposition) Ascend

Consider solving the following problem

min f(xz) st. Ar =10 (19.1)

We know its Lagrangian form is
L(z,u) = f(z) +uT (Az — b) (19.2)

and the Lagrange dual function is
g(u) = inf L(x, u). (19.3)
T

So the dual problem of (19.2) is

max g(u). (19.4)

A natural way to solve (19.4) is using subgradient ascent. Given u, assume x* minimizes L(z,u), then the
subgradient is g(u) = Az™ — b. Choosing learning rate sequence 7, ... ,, the subgradient ascent is defined
as following;:

For timet=1,...,
't = arg mwin L(z,u") (19.5)
ut =l +pf (AT —b) (19.6)
If strongly duality holds, and u* is the optimal solution of the dual problem (19.4), then the optimal primal
point can be computed as z* = arg min, L(x, u*).
For appropriate learning rate n* and under certain conditions, z?, u* converge to optimal primal and dual

points, respectively. However, when g is not differentiable, we cannot assure the ascent of the dual objective
value for each iteration, namely g(u'**) # g(u').

Now assume the objective function f(x) is decomposable, that is, it can be written as f(x) = Y. fi(x;),
where z; € R™ are disjoint sets subject to x = {x1,...,2nx}. Denote by Az =, A;x;, we rewrite the
Lagrange form (19.2) as

3

L(z,u) = Z Li(z;,u) = Z (fi(xi) +ul Ay — JifuTb> (19.7)

19-1

19-2 Lecture 19: October 30

For fixed u, (19.7) consists of N independent components, which can be optimized simultaneously. So the
dual ascent algorithm turns to be

xitt = argminLi(aji,ut) fori=1,...,N (19.8)
u T =t +pf (AT — D) (19.9)

Comparing to (19.5), which minimize L on the whole =, now we solve N smaller problems.

19.1.2 Augmented Lagrangian

Augmented Lagrangian explicitly adds an additional strictly convex term to make the problem easier for
solving. Choose p > 0, it has the form:

Ly(z,u) = f(z) + uT (Az — b) + gHAI — b2, (19.10)

The additional term equals to 0 at the optimal point z*, since we have Az* = b. So it does not affect the
result.

Now the associated dual function is

gp(u) = Inggan(z,u)7 (19.11)

and the dual ascent comes to
' = arg m‘/gn L,(z,u") (19.12)
u' T = ol + p(AzT — D) (19.13)

Easy to see L,(z,u) is strictly convex with respect to x, even though it is not true for the original L(z,u).
However, ||Ax — b||3 cannot be decomposed as a serial of functions on z;, so the decomposition trick we used
before cannot be applied here.

19.1.3 ADMM

ADMM extends the decomposition idea to augmented Lagrangian. It iteratively solves a smaller problem
with respect to x; by fix the variable x; for j # i. We consider the case N = 2 for simplicity; it can be easily
extend to general N. Now f(z) has form f(z) = f1(z1) + f2(z2) and the augmented Lagrangian is

Lp(xl,x27u) = fl(-’L'l) + fg(ﬂ?g) + uT(Alacl + Agxo — b) + g”Al‘rl + Aoxg — b”% (19.14)

ADMM solves each direction alternatively

xt1+1 = arg min Lp(xl,zé, u) (19.15)
1

2h = argmin L, (24 24, u') (19.16)
T2

ut =t 4 p(Aattt 4+ Ayt — b) (19.17)

On the first step, we fix o and u by values on the last iteration and obtain a new x; by solving the smaller
problem with respect to only z;. Next we use the new x; to obtain new x5. Finally we update the dual
variable u. Different to the dual decomposition ascent, ADMM updates x; sequentially. The reason is
that the additional augment term makes we can not decompose the Lagrangian form into N conditionally

Lecture 19: October 30 19-3

independent components (conditioned on u) as we did on (19.7). So solving step 1 and 2 simultaneously may
give different results than solving it sequentially. The latter strategy using the most up-to-date information
about x; potentially accelerates the convergence.

Given assumptions:

1. Function fq, fo are closed, proper, and convex (which means their according epigraphs are closed,
nonempty, and convex)

2. The un-augmented Lagrangian Lo(x1, 22, u) has saddle points 27, x5 and u subject to

Lo(z7, x5, u) < Lo(xy, 25, u”) < Lo(z1, x2,u®) (19.18)
Then when ¢t — 0o, we have

Residual convergence: r' = Aja!l + Aszh —b— 0

Objective convergence: fi(x}) + fo(xh) — f*

Dual variable convergence: u! — u*

For the proof, please refer to [BPCPE10]. Note that we cannot assure the convergence of the primal variables

without further assumptions. As for non-strictly convex f(x), though there is unique optimal values f*, the
solution x* is not necessary unique.

Finally we gives an example on how to apply ADMM. Consider the generalized Lasso with repeated ridge:

1
InminiHAx—bH%-i-)\HFxHL (19.19)

F can be arbitrary form, for example, let
F= - , (19.20)

the regularizer has the form), |x; — 41|, which makes the adjacent pair (z;,z;41) be similar. Rewrite
(19.19) as a constraint problem

1
min 2 || Az — b3+ A|z]i st. Fr—2z=0. (19.21)
x
The augmented Lagrangian form is
1
Lz, u) = 5|4z = b3+ Azl + pu” (Fi = 2) + S|P — 2|, (19.22)

where we add a scalar p before u to make things simple without affecting the results. First we solve
't = argmin, L(x, 28, ut), it’s a quadratic function about = and has the following closed form solution

't = (ATA + pFTF)_1 (ATb+ pFT (2" —u')). (19.23)

Next calculate z!*! = argmin, L(z'T?, z,ut), it is a soft-shrinkage problem whose solution is also of closed
form:

=8y, (Fatth 4+ ul), (19.24)

19-4 Lecture 19: October 30

where the soft-shrinkage operator is defined as Sy (a) = (1 — W) a and (-)4+ is the positive part. Finally
+

we update u by utt!t = ! + Falitl — L

Solving the original problem (19.19) directly is not easy. By dividing it into two components, we can solve
each one with closed form solution. ADMM decomposes complex optimization function elegantly and can
be extend to distributed version easily. It converges fast at the early stage, but requires a large number of
iterations for high precision solution.

19.2 Mirror Descent

Mirror Descent (MD) is a descent method just like Gradient Descent (GD). MD is better than GD when in
high dimension. Say if the dataset is in n-dimensional, MD scales well with n, better than GD.

19.2.1 Bergman Divergence

1. When we say a function g is strongly (or A-strongly) convex wrt norm |[|.||, we mean:
T A 2
9(y) 2 9(2) + Vo (y — 2) + Sy — =] (19.25)
For example, if function g is strongly convex wrt norm ||.||2,then that means:
T A 2
9(y) 2 9(2) + Vo (y — 2) + Slly — [l (19.26)
2. If a function g is strongly convex wrt norm ||.||, we define Bregman Divergence A, to be:
Ag(a,y) = g(z) = [9(y) + V)" (z — y)] (19.27)

3. Ay is the distance between = and y as meansured by function g

4. Eg 1: g(x) = |||z||3 was strongly convex wrt ||.||2,
Ag(z,y) = |lz =yl (19.28)

5. Eg 2: g(x) =", (x;logx; — x;) strong ly convex wrt ||.||1,

i

Ag(z,y) = Z(azilog(%) +yi — ;) (19.29)

%

e g(z) is unromalized entropy.

Lecture 19: October 30 19-5

e This result form should remind you of KL divergence.
6. Some properites of Bregman Divergence.
(a) By definition, Ag(z,z) =0

s 2
(b) By definition (19.27), and by (19.25), Ay(z,y) ge% >0
(¢c) When we take the derivatives of (19.25), we have:

Valg(z,y) = Vg(z) — Vg(y) (19.30)
V2A,(z,y) = Vig(z) = A\ (19.31)

(d) Triangle Inequality (kinda):
Ag(@,y) + Ag(y, 2) = Bg(x,2) + (Vg(2) — Vo))" (v — y) (19.32)

19.2.2 Mirror Descent - Updates

Remarks: MD is same to GD, just use a different distance meansure (Bregman).

1. In Gradient Descent, we minimize quadratic approx. of f at a!(H! = 1)

1
o = argming f(2') + 0f ()T (x — 2') + §Hx —zt||2 (19.33)
2. In Mirror Descent, instead of using 1|z — 2!||3, we use Bergman Divergence. Gvien a norm ||.|| over
the domain S,
2 = argmin, f(z') + 0f (") (x —) + V4 (2, 2%) (19.34)

where g is strongly convex wrt ||z||.

3. Alternatively,

i = argmmin f@) +of(@")T (x — 2') + Vy(x, 2% (19.35)
—argmin f(a') + 9f") (@ - ") + g(e) — (o) — Vgla) (w — ') (19.36)
—argmin ST + 0 (0) + g(a) - gla?] — Vg(a')T (&) (19.37)
—argmin 9f(e")a + g() — Vg(a') (19.38)
=argmin 2" (9f(a") - Vg(a")) + g(x) (19.39)
In some literature, you will actually see the updating in this form.
4. If we take the derivative of (19.39) wrt x, we have,

of(z") — Vg(a') + Vg(z') =0 (19.40)

5. Sometimes, we see people write x'T1 = Vg~1(..), that is because we can rearrange (19.40),
Vy(a') = Vg(a') —n'9f(a") (19.41)

Hence,

1 =vVg ! (Vy(z') —n'of(a")) (19.42)

19-6

6.

Lecture 19: October 30

Primal Dual

Another way people describe Mirror Descent is draw some diagram like this:

Start from z! in the Primal space, you take gradient of g, and got Vg(z!) in Dual space.
e Then in the Dual spece, you take a step, in the direction of —n'df(z?).
e Then you take a inverse step, Vg~1, and got your z(t 4 1) in the Primal space.

Somehow I see a mirror here between Primal and Dual spaces ...

19.2.3 Convergence Guarantees

1.

Let ||0f(z)||+ < Ljjg)|- We say that function f is in Lipshits L, and here L is the Lipshits constant.
For different norms |[.||, we should have different L (Lj.||). Equivalently,

f@) = fly) < Lyyllz =yl (19.43)

. Let 29 = argmingcg g(x). You can imagine x9 being some kind of center of set S.

Let diameter Dy ||| = v/2max, Ag(x9,y)/k, then

[lz — 29| < Dg . (19.44)

ADg 1.1

: t __
Chooing 1" = 157ah 1 VT

< Lui Py,

fla) = fl@*) < T (19.45)

The above (19.45) is a very generalized form. For the case of ||.||2 norm, you will get what is similar
to the form from HW2 (via regret) for projected subgradient descent.

LoDy
VT

f@®) = f(@*) < (19.46)
where both Lo f, S and D5S depends on set .S

° L2 = max, ||8f(x)|\§

o Dy = /maxg,y [[z —y[[3

Lecture 19: October 30

19.2.4 Convergence Example: Probability Simplex and ||.||;

1. for n-dimensional simplex: = > 0, 1Tz =1

2. Functions are Lipschitz wrt ||.||1: maz,||0f (2)||inf < L1

19-7

This is actually a very week condition (subgradient bounded in infinity norm by L1), allowing very

large subgradient.

3. We choose g to be this (kind of) unnormalized entropy (sum of x; is 1):
= Z zilogx; — x;

The updating is like this, what we call exponentiated gradient:

= 2t o exp(—1'V ("))

T

This is because:

= inlogx,- — X;

Vyg(z) = logx (log applied element-wise)
“1(x) = exp(z) (element-wise)
(= Vg(Y —n'Vf(2") (updating in Dual space)
log(¢+1) = log(a') — 'V f (")
' = exp(log(s') — n'V f(z"))
— 2t o exp(—n'V f(1))

T

4. Diameter D || < v/2logn, yielding a rate y/logn/T
5. Suppose you use gradient descent, with g(z) = ||z||3. Then

e Then the diameter bound in Ly norm is Dy = 1;
e the Lipschitz bound in Ly norm is Ls < /nLy.
e Put them together you get a rate of \/n/T.

References

(19.47)

[BPCPE10] BovYD, PARIKH, CHU, PELEATO, and ECKSTEIN, “Distributed Optimization and Statistical

Learning via the Alternating Direction Methodof Multipliers.”

[BN12] BEN-TAL and NEMIROVSKI, “Lecture Notes on Modern Convex Optimization.”

