Support Vector Machines (SVMs)

Machine Learning - 10601

Geoff Gordon, MiroslavDudík

[partly based on slides of Ziv-Bar Joseph]
http://www.cs.cmu.edu/~ggordon/10601/

November 16, 2009

SVMs = max margin classifiers

- · Instead of fitting all points, focus on the boundary
- Learn a boundary that leads to the largest margin from points on both sides

Finding the optimal parameters

 $M = \frac{2}{\sqrt{\mathbf{w}^T \mathbf{w}}}$

We can now search for the optimal parameters by finding a solution that:

- 1. Correctly classifies all points
- 2. Maximizes the margin (or equivalently minimizes w^Tw)

Several optimization methods can be used: Gradient descent, simulated annealing, EM etc.

Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

$$\min_{\mathbf{u}} \frac{\mathbf{u}^T \mathbf{R} \mathbf{u}}{2} + \mathbf{d}^T \mathbf{u} + c$$

subject to n linear inequality constraints:

Quadratic term

$$a_{11}u_1 + a_{12}u_2 + \dots \le b_1$$

 \vdots \vdots \vdots
 $a_{n1}u_1 + a_{n2}u_2 + \dots \le b_n$

and k linear equality constraints:

$$a_{n+1,1}u_1 + a_{n+1,2}u_2 + \dots = b_{n+1}$$

 \vdots \vdots \vdots

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots = b_{n+k}$$

When a problem can be specified as a QP problem we can use solvers that are better than gradient descent or simulated annealing

SVM as a QP problem

A total of n constraints if

we have n input samples

Min $(w^Tw)/2$

subject to the following inequality constraints:

For all x in class + 1

 $w^Tx+b \ge 1$

For all x in class - 1

 $w^Tx+b \le -1$

 $\mathbf{M} = \frac{1}{\sqrt{\mathbf{w}^{\mathrm{T}} \mathbf{w}}}$

$$\min_{u} \frac{u^T R u}{2} + d^T u + c$$

subject to n inequality constraints:

$$a_{11}u_1 + a_{12}u_2 + \dots \le b_1$$

$$a_{n1}u_1 + a_{n2}u_2 + \dots \le b_n$$

and k equivalency constraints:

$$a_{n+1,1}u_1+a_{n+1,2}u_2+\ldots=b_{n+1}$$

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots = b_{n+k}$$

Non-separable case

Non-separable case #2

• Instead of minimizing the number of misclassified points we can minimize the *distance* between these points and their correct plane

The new optimization problem is:

$$\min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^\mathsf{T} \mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i$$

subject to the following inequality constraints:

For all
$$x_i$$
 in class + 1

$$w^Tx+b \ge 1-\epsilon_i$$

$$w^Tx+b \le -1 + \epsilon_i$$

$$\epsilon_i \ge 0$$

Where we are

Two optimization problems: For the separable and non separable cases

$$\min_{\mathbf{w}, h} \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2}$$

For all x in class + 1

 $w^Tx+b \ge 1$

For all x in class - 1

 $w^Tx+b \le -1$

 $\min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^\mathsf{T}\mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i$

For all x_i in class + 1

$$w^Tx+b \ge 1- \epsilon_i$$

For all x_i in class - 1

$$w^Tx+b \le -1 + \epsilon_i$$

For all i

$$\epsilon_i \ge 0$$

Non-separable case

$$\min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^\mathsf{T}\mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i$$

For all x_i in class + 1

 $w^Tx + b \geq 1 - \epsilon_i$

For all x_i in class - 1 $w^Tx+b \le -1 + \epsilon_i$

For all i $\epsilon_l \ge 0$

$$\min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^\mathsf{T} \mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i$$

For all i

 $(w^Tx_i+b)y_i \ge 1-\epsilon_i$

 $\epsilon_i {\geq 0}$

Non-separable case: Hinge loss

Why?

$$\min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^\mathsf{T}\mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i$$

$$y_i f(x_i) \ge 1 - \epsilon_i$$

ε_i≥ 0

Hinge loss vs Log loss

Where we are

Two optimization problems: For the separable and non separable cases

Two optimization
$$\min_{\mathbf{w},b} \frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{2}$$

 $(w^Tx_i+b)y_i \ge 1$

$$\min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i$$

$$(w^Tx_i+b)y_i \ge 1-\epsilon_i$$

$$\epsilon_i \ge 0$$

Where we are

Two optimization problems: For the separable and non separable cases

$$\begin{aligned} \min_{\mathbf{w},b} \frac{\mathbf{w}^\mathsf{T}\mathbf{w}}{2} & \min_{\mathbf{w},b,\varepsilon_i} \frac{\mathbf{w}^\mathsf{T}\mathbf{w}}{2} + \sum_{i=1}^n C\varepsilon_i \\ (\mathbf{w}^\mathsf{T}\mathbf{x}_i + \mathbf{b})\mathbf{y}_i \geq 1 & (\mathbf{w}^\mathsf{T}\mathbf{x}_i + \mathbf{b})\mathbf{y}_i \geq 1 - \varepsilon_i \\ & \varepsilon_i \geq 0 \end{aligned}$$

- Instead of solving these QPs directly we will solve a dual formulation of the SVM optimization problem
- The main reason for switching to this type of representation is that it would allow us to use a neat trick that will make our lives easier (and the run time faster)

An alternative (dual) representation of the SVM QP

• We will start with the linearly separable case

Min $(w^Tw)/2$

• We will use Lagrange multipliers to derive an equivalent problem

 $(w^Tx_i\text{+}b)y_i \geq 1$

Lagrange multipliers

Lagrange multipliers

min
$$x^2$$

S.t. $x > b$
11
min max $[x^2 - (x - b) d]$
 $x = d > 0$

Lagrange multipliers: saddle-point solution

Lagrange multipliers for SVMs

Dual formulation

 $\forall i$

 $\max_{\alpha_i} \min_{\mathbf{w}, b} \frac{\mathbf{w}^\mathsf{T} \mathbf{w}}{2} - \sum_i \alpha_i [(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) y_i - 1]$ $\alpha_i \ge 0$

Original formulation

Min (w^Tw)/2 $(w^Tx_i+b)y_i \geq 1$

Using this new formulation we can derive the best action for minimizer, by taking the derivative w.r.t. w and b leading to:

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{x}_{i} y_{i}$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Dual SVM for linearly separable case

Substituting w into our target function and using the additional constraint we get:

Dual formulation

$$\max_{\alpha_i} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x_i x_j}$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_i \ge 0 \quad \forall$$

FROM PREVIOUS SLIDE:

$$\max_{\alpha_i} \min_{\mathbf{w}, b} \frac{\mathbf{w}^\mathsf{T} \mathbf{w}}{2} - \sum_i \alpha_i [(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) y_i - 1]$$
$$\alpha_i \ge 0 \qquad \forall i$$

$$\mathbf{w} = \sum_{i} \alpha_i \mathbf{x}_i y_i$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Dual SVM - interpretation

Dual SVM for linearly separable case

Our dual target function:
$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\sum_{i} \alpha_{i} \mathbf{y}_{i} = 0$$

Dot product for all training samples

$$\alpha_i \ge 0 \qquad \forall i$$

Dot product with training samples

To evaluate a new sample **x** we need to compute:

$$\mathbf{w}^\mathsf{T} \mathbf{x} + b = \sum_i \alpha_i y_i \mathbf{x}_i \mathbf{x} + b$$

Is this too much computational work (for example when using transformation of the data)?

Classifying in 1-d

Can an SVM correctly classify this data?

What about this?

Non-linear SVDs in 2-d

• The original input space (\mathbf{x}) can be mapped to some higher-dimensional feature space $(\phi(\mathbf{x}))$ where the training set is separable:

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$$
 $\phi(\mathbf{x}) = (\mathbf{x}_1^2, \mathbf{x}_2^2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2)$

If data is mapped into sufficiently high dimension, then samples will in general be linearly separable;

N data points are in general separable in a space of N-1 dimensions or more!!!

 \mathbf{x}_1^2

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Transformation of Inputs

- · Possible problems
 - High computation burden due to high-dimensionality
 - Many more parameters
- SVM solves these two issues simultaneously
 - "Kernel tricks" for efficient computation
 - Dual formulation only assigns parameters to samples, not features

Polynomials of degree two

- While working in higher dimensions is beneficial, it also increases our running time because of the dot product computation
- However, there is a neat trick we can use

 \bullet consider all quadratic terms for $\mathbf{x_1},\,\mathbf{x_2}\,\dots\,\mathbf{x_m}$

The √2 m+1 linear terms term will become clear in the next slide m quadratic terms m is the number of features in each vector

m(m-1)/2 pairwise terms $\sqrt{2}x_{m-1}x_m$

Polynomials of degree d in m variables

Polynomials of degree d in m variables

Original formulation

Min $(w^Tw)/2$

 $(w^T \phi(x_i) + b) y_i \ge 1$

Dual formulation

$$\max_{\alpha} \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(\mathbf{x_{i}}) \varphi(\mathbf{x_{j}})$$
$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_i \ge 0 \qquad \forall i$$

Dot product for polynomials of degree two

How many operations do we need for the dot product?

The kernel trick

How many operations do we need for the dot product?

$$= \sum_{i} 2x_{i}z_{i} + \sum_{i} x_{i}^{2}z_{i}^{2} + \sum_{i} \sum_{j=i+1} 2x_{i}x_{j}z_{i}z_{j} + 1$$

$$m \qquad m \qquad m(m-1)/2 \qquad =\sim m^{2}$$

However, we can obtain dramatic savings by noting that

$$(xz+1)^{2} = (xz)^{2} + 2(xz) + 1$$

$$= (\sum_{i} x_{i}z_{i})^{2} + \sum_{i} 2x_{i}z_{i} + 1$$

$$= \sum_{i} 2x_{i}z_{i} + \sum_{i} x_{i}^{2}z_{i}^{2} + \sum_{i} \sum_{j=i+1} 2x_{i}x_{j}z_{i}z_{j} + 1$$

We only need m operations!

Note that to evaluate a new sample we are also using dot products so we save there as well

Where we are

Our dual target function:

Our dual target function:
$$\max_{\alpha_i} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \varphi(\mathbf{x}_i) \varphi(\mathbf{x}_j)$$
$$\sum_i \alpha_i y_i = 0$$
$$\alpha_i \ge 0 \qquad \forall i$$

mn2 operations at each iteration

To evaluate a new sample x we need to compute:

$$\mathbf{w}^{T} \varphi(\mathbf{x}) + b = \sum_{i} \alpha_{i} y_{i} \varphi(\mathbf{x}_{i}) \varphi(\mathbf{x}) + b$$

mr operations where r is the number of support vectors ($\alpha_i > 0$)

Other kernels

- •Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right k ernel function
- $K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{(\mathbf{x} \mathbf{z})^2}{2\sigma^2}\right)$ - Radial-Basis Function:
- kernel functions for discrete objects (graphs, strings, etc.)

Kernels measure similarity

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{(\mathbf{x} - \mathbf{z})^2}{2\sigma^2}\right)$$

Decision rule for a new sample **x**:

$$\mathbf{w}^T \, \varphi(\mathbf{x}) + b = \sum_i \alpha_i \, y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

Dual formulation for non-separable case

Dual target function:

max
$$_{\alpha}\sum_{i}\alpha_{i}-\frac{1}{2}\sum_{\mathbf{i},\mathbf{j}}\alpha_{i}\alpha_{j}\mathbf{y}_{\mathbf{i}}\mathbf{y}_{j}\mathbf{x}_{\mathbf{i}}\mathbf{x}_{\mathbf{j}}$$
 we need to compute:
$$\sum_{i}\alpha_{i}\mathbf{y}_{\mathbf{i}}=0$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}+b=\sum_{i}\alpha_{i}y_{i}\mathbf{x}_{\mathbf{i}}\mathbf{x}+b$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_i \ge 0$$

The only difference is

bounded

that the α_{l} 's are now

To evaluate a new sample x

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \mathbf{x} + b$$

Why do SVMs work?

- If we are using huge features spaces (with kernels) how come we are not overfitting the data?
 - We maximize margin!
 - We minimize loss + regularization

Software

- A list of SVM implementation can be found at http://www.kernel-machines.org/software.html
- Some implementation (such as LIBSVM) can handle multiclass classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available

Multi-class classification with SVMs

What if we have data from more than two classes?

- Most common solution: One vs. all
- create a classifier for each class against all other data
- for a new point use all classifiers and compare the margin for all selected classes ⋆

Note that this is not necessarily valid since this is not what we trained the SVM for, but often works well in practice

Applications of SVMs

- Bioinformatics
- Machine Vision
- · Text Categorization
- · Ranking (e.g., Google searches)
- · Handwritten Character Recognition
- · Time series analysis
 - →Lots of very successful applications!!!

Handwritten digit recognition

3-nearest-neighbor = 2.4% error 400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) $\approx 0.6\%$ error

Important points

- Difference between regression classifiers and SVMs'
- Maximum margin principle
- Target function for SVMs
- Linearly separable and non separable cases
- Dual formulation of SVMs
- Kernel trick and computational complexity