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SVMs = max margin classifiers

* Instead of fitting all points, focus on the boundary

 Learn a boundary that leads to the largest margin
from points on both sides
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Finding the optimal parameters
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We can now search for the optimal parameters by finding a
solution that: i
: W,

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)

Several optimization methods can be used:
Gradient descent, simulated annealing, EM etc.

Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

TRu

miny, +d u+c

subject to n linear inequality constraints: Quadratic term

a i +aoUs +...< b_]_

apUp +apoUy +...< by When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or
An4+11U1 +apyg 2Up +... =bpyg simulated annealing

and k linear equality constraints:

An1k 12Ut +ansk,2U2 + = bk
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SVM as a QP problem
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A

predict c\as®”

subject to the following inequality

constraints:
Forall xinclass+ 1

wix+b > 1
Forall xinclass-1

wix+b < -1

Atotal of n
constraints if
we have n
input samples

2
Vw u' Ru

+dTu+c

miny,
subject to n inequality constraints:

 qUp +aoly +...< b_l

apUp +apoUs +... < bn

and k equivalency constraints:

411Uy +angg2Up +o =Dy

n kU T ank,2U2 +. = bk

Non-separable case
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Non-separable case #2
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Non-separable case #2
due to noise and outliers

How can we convert this to a

Hard to solve (two QP problem?
minimization problems L .
P ) - Minimize training errors?
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Non-separable case #2
due to noise and outliers

How can we convert this to a

Hard to solve (two QP problem?
minimization problems o .
P ) - Minimize training errors?
/7 H Ty
Y Y o / min w'w
7 .
e © // min #errors
{ ]
/ . -
® ’ - Penalize training errors:
V4
° o i min wTw+C*(#errors)
,I [ J [ J
’ [ J
/ ° o ®
,/ o ® nonconvex objective
, i o
, ° NP-hard to optimize

Non-separable case #2

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

The new optimization problem is:
T n
LWwW
min + Cej
W,b,é‘i =1

subject to the following inequality
constraints:

+1 plane
/

Forall x;inclass + 1
Wix+b > 1- ¢

Forall x;inclass -1
WX+ < -1+ g

Wait. Are we missing
something?
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Non-separable case #2

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

+1 plane
/

The new optimization problem is:

T n
W w
min +> Cg
=

W,b,{;‘i

subject to the following inequality
constraints:

Forall x;inclass + 1
Wix+b > 1- g

For all x;inclass -1
WX+ < -1+ g

Forall i

8i20

Where we are

Two optimization problems: For the separable and non separable cases

min
wb 2

Forall xinclass+ 1
wix+b > 1

Forall xinclass-1

wix+b <-1
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T n
WwW
min + E Ce;
W,b,gi 2 i=1

Forall x inclass + 1
Wix+b > 1- ¢

Forall x;inclass -1
Wix+b < -1+ g

For all i
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Non-separable case

T n
W'w
min +> Cg
=

W,b,é‘i 2

Forall x;inclass + 1

wWix+b > 1- g =
For all x;inclass -1 Why?

WTX+b < -1+ g

For all i
£2>0

T n
W W
min + E Ce;
W,b,é‘i 2 i=1

For all i
(WTx+b)y, > 1- ¢

20

Non-separable case

T n
W' W
min + Cej
=

W,b,gi 2
Y f(x) = 1- ¢
SiZ 0

: Hinge loss
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Hinge loss vs Log loss

Where we are

Two optimization problems: For the separable and non separable cases
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Where we are

Two optimization problems: For the separable and non separable cases

T n
. W w .. W'W
min min +> Cg
whb 2 wbe 2 )
(Wx+b)y; > 1 (WTx+b)y; > 1- g
20

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

* The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

An alternative (dual)
representation of the SVM QP

* We will start with the linearly separable case Min (wTw)/2

» We will use Lagrange multipliers to derive an

_ (WTx+b)y, > 1
equivalent problem
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Lagrange multipliers
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Lagrange multipliers:
saddle-point solution

VWA Wt LLK,,(}
%< 2320

o WAL WG

L0 Y

Lagrange multipliers for SVMs

Dual formulation Original formulation

“Yalwh by g MO0
i (WTx+b)y; > 1

wlw
2

max g, miny,

Qi >0 Yi

Using this new formulation we can derive the best action for
minimizer, by taking the derivative w.r.t. w and b leading to:

W=ZaiXiYi

|
Zaiyi =0
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Dual SVM for linearly

separable case

Substituting w into our target
function and using the
additional constraint we get:

Dual formulation

1
maxai Zai —EZaiajyiijixj
i ij

D ajyi =0
i

Qj >0 Yi

Feon pPREVIOVS SLDE

Qi >0 Vi

W:zaiXiYi
i

zaiyizo

=
. w'w
max 5, Miny p T_Zai[(WTXi +b)y; -1

Dual SVM - interpretation

W=D aiXyj
i

For o’s that are not 0

Zaiyi =0; ;=0

11/16/2009
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Dual SVM for linearly
separable case

ion- 1
Our dual target function: max Zai _Ezaiajyiij<j
i ij

Za,y. =0 Dot product for all
— training samples

a,20 Vi Dot product with
training samples

To evaluate a new sample x /

we need to compute:
P wix+b=> ayixix+b
i

Is this too much computational
work (for example when using
transformation of the data)?

Classifying in 1-d

Can an SVM correctly What about this?
classify this data?

11/16/2009
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Classifying in 1-d

Can an SVM correctly And now?
classify this data?
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Non-linear SVDs in 2-d

The original input space (x) can be mapped to some higher-dimensional
feature space (@(x))where the training set is separable:

X:(X]JXZ) (p(X) :(X12!X22!\/2X1X2)

R V2X,X,
If data is mapped into sufficiently high dimension, then
%o samples will in general be linearly separable;
+ N data points are in general separable in a space of N-1
. | dimensions or more!!!

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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Transformation of Inputs

* Possible problems
- High computation burden due to high-dimensionality
- Many more parameters

* SVM solves these two issues simultaneously
— “Kernel tricks” for efficient computation

— Dual formulation only assigns parameters to samples, not features

Input space Feature space

Polynomials of degree two

« While working in higher dimensions is max, D ai =) aia ¥y jp(x;)e(x;)
beneficial, it also increases our running time i i
because of the dot product computation Zai y; =0
1
* However, there is a neat trick we can use @ >0 vi
« consider all quadratic terms for x4, X, ... X, — =
number of
The V2 L features in
q D \/Exl A
term will . «—— m+l linear terms each vector
become N
clearin the p(x) =
next slide Kt

“——— m quadratic terms

V2x%
i m(m-1)/2 pairwise terms
V2Xm_1Xm

11/16/2009
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Polynomials of degree d
in m variables

Polynomials of degree d
in m variables

Original formulation
Min (wTw)/2
(WTo(x)+b)y; > 1

Dual formulation

max, " =Y aia Yy je(x)p(x;)

i i
D ajyi=0
i

;20 Vi
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Dot product for polynomials
of degree two

How many operations do we need for the dot product?

1 1
\/EX]_ \/EZ]_
V2xy, J2z,,
oWeD= L T 2wE e s 4 2 D 2wz ]
Xl ° Zl i i i j=i+l
5 5 m m m(m-1)/2  =~m?2

\/EX]_XZ \/EZ]_ZZ

VX X V2zmazm

The kernel trick

How many operations do we need for the dot product?

= Z2xizl. + le.zzl.z + Z z2xiszizj +1
i i

i =it

m m m(m-1)/2 =~ m?2

However, we can obtain dramatic savings by noting that

(xz+1)? (x2)*+2(x2)+1

(Z:x,zi)2 + ZZx,z[ +1
Zinzl. +lZ:x,.zz,.2 + 2 ZZx,.szizj +1

i =it

\ .

We only need m

| ' Note that to evaluate a new sample
operations!

we are also using dot products so
we save there as well

11/16/2009
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Where we are

max Zai _%Zaiajyiyj¢(xi)¢(xj) we need to compute:

| W (9 +b = 3 yipxi)p() +b

mr operations where r
is the number of
support vectors (o;>0)

mn? operations at each
iteration

Other kernels

*Beyond polynomials there are other very high dimensional basis
functions that can be made practical by finding the right k ernel
function

: : : (x—z)2
- Radial-Basis Function: K(x,z) =exp| — 5
20

- kernel functions for discrete objects (graphs, strings, etc.)
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Kernels measure similarity

K (x.2) :exp{— (X—ZZ)ZJ Decision rule for a new
20 sample x:
w! o(x)+b= D ayiK(Xj,X)+b
i
) TT\MRL
SVM - Radial Kernel / el
Del. bovoney

sSvw
Yec, bov .-)N\LT

Training Error: 0.160 e K]
Test Error: 0.218 TRl '
Bayes Error:  0.210 TN 0

This slide is courtesy of Hastie-Tibshirani-Friedman, 2" ed.
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Dual formulation for
non-separable case

Dual target function: To evaluate a new sample x
we need to compute:

1
max , Zai _Ezaianiijixj
i ™ wix+b=>ayixix+b

Zain =0 !

C>a;20 Vi

\ The only difference is

that the o,’s are now
bounded

Why do SVMs work?

« If we are using huge features spaces (with kernels) how come we
are not overfitting the data?

- We maximize margin!

- We minimize loss + regularization

11/16/2009
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Software

* Alist of SVM implementation can be found at
http://www.kernel-machines.org/software.html

* Some implementation (such as LIBSVM) can handle multi-
class classification

* SVMLight is among one of the earliest implementation of SVM
* Several Matlab toolboxes for SVM are also available

Multi-class classification with SVMs

What if we have data from more than two
classes?

* Most common solution: One vs. all

° - create a classifier for each class against
° o all other data

o : -
° - for a new point use all classifiers and
° compare the margin for all selected
classes

® ® Note that this is not necessarily valid

® since this is not what we trained the
SVM for, but often works well in
practice

11/16/2009
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Applications of SVMs

Bioinformatics

Machine Vision
Text Categorization
Ranking (e.g., Google searches)
Handwritten Character Recognition
Time series analysis

—>Lots of very successful applications!!!

Handwritten digit recognition
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3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ~= 0.6% error

11/16/2009
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Important points

* Difference between regression classifiers and SVMs’
* Maximum margin principle

* Target function for SVMs

* Linearly separable and non separable cases

* Dual formulation of SVMs

* Kernel trick and computational complexity
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