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SVMs = max margin classifiers

• Instead of fitting all points, focus on the boundary

• Learn a boundary that leads to the largest margin

from points on both sides
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Finding the optimal parameters



M 
2

wTw

We can now search for the optimal parameters by finding a 

solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used: 

Gradient descent, simulated annealing, EM etc.

Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:
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Quadratic term

When a problem can be 

specified as a QP problem we 

can use solvers that are better 

than gradient descent or 

simulated annealing
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SVM as a QP problem
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

M 
2

wTw

Min (wTw)/2 

subject to the following inequality 

constraints:

For all  x in class + 1

wTx+b  1

For all  x in class - 1

wTx+b  -1
}

A total of n 

constraints if 

we have n 

input samples

Non-separable case
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Non-separable case #2

How can we convert this to a 

QP problem?

- Minimize training errors?

min wTw

min  #errors

Hard to solve (two 

minimization problems)

Non-separable case #2
due to noise and outliers
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How can we convert this to a 

QP problem?

- Minimize training errors?

min wTw

min  #errors

- Penalize training errors:

min wTw+C*(#errors)

Hard to solve (two 

minimization problems)

nonconvex objective 

NP-hard to optimize

Non-separable case #2
due to noise and outliers

Non-separable case #2

• Instead of minimizing the number of misclassified points we can 

minimize the distance between these points and their correct plane

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality 

constraints:

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

Wait. Are we missing 

something?
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Non-separable case #2

• Instead of minimizing the number of misclassified points we can 

minimize the distance between these points and their correct plane

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality 

constraints:

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

For all i

i 0


n

i=

i
b

Cε
i 1,,

min +
2

Tww

w 

Where we are
Two optimization problems: For the separable and non separable cases

For all  x in class + 1

wTx+b  1

For all  x in class - 1

wTx+b  -1

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i


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i
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For all i

i 0
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w b,
min
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Non-separable case

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

For all i

I  0

For all i

(wTxi+b)yi  1- i

i 0



Why?
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Non-separable case: Hinge loss

yi f(xi)  1- i

i 0


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Hinge loss vs Log loss

Where we are
Two optimization problems: For the separable and non separable cases

(wTxi+b)yi  1 (wTxi+b)yi  1- i

i 0
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Where we are
Two optimization problems: For the separable and non separable cases

• Instead of solving these QPs directly we will solve  a dual 

formulation of the SVM optimization problem

• The main reason for switching to this type of representation 

is that it would allow us to use a neat trick that will make our 

lives easier (and the run time faster)

(wTxi+b)yi  1 (wTxi+b)yi  1- i

i 0
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T
ww
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An alternative (dual) 
representation of the SVM QP

• We will start with the linearly separable case

• We will use Lagrange multipliers to derive an

equivalent problem

Min (wTw)/2

(wTxi+b)yi  1
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Lagrange multipliers

Lagrange multipliers
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Lagrange multipliers:
saddle-point solution

Lagrange multipliers for SVMs
Original formulation

Min (wTw)/2

(wTxi+b)yi  1
i
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Dual formulation

Using this new formulation we can derive the best action for 

minimizer, by taking the derivative w.r.t. w and b leading to:



 iyi  0
i




i

iii yxw 
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Dual SVM for linearly
separable case 

Dual formulation

Substituting w into our target 

function and using the 

additional constraint we get:
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Dual SVM - interpretation


i

iii yxw 

For ’s that are not 0

0;0  i

i

ii y     
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Dual SVM for linearly
separable case 

Our dual target function:



max  i 
i


1

2
 i jyiy j

i, j

 x ix j

 iyi  0
i



 i  0 i

Dot product for all 

training samples 

To evaluate a new sample x

we need to compute:
byb i

i

ii   xxxwT

Dot product with 

training samples 

Is this too much computational 

work (for example when using 

transformation of the data)?

Classifying in 1-d

Can an SVM correctly 

classify this data?

What about this?

X X
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Classifying in 1-d

Can an SVM correctly 

classify this data?

And now?

X2

X X

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

φ :  x → φ(x)

x1
2

x2
2

2x1x2

x=(x1,x2)

• The original input space (x) can be mapped to some higher-dimensional 

feature space (φ(x))where the training set is separable:

φ(x) =(x1
2,x2

2,2x1x2)

Non-linear SVDs in 2-d

If data is mapped into sufficiently high dimension, then 

samples will in general  be linearly separable; 

N data points are in general separable in a space of N-1 

dimensions or more!!!



11/16/2009

15

Transformation of Inputs
• Possible problems

- High computation burden due to high-dimensionality 

- Many more parameters

• SVM solves these two issues simultaneously
– “Kernel tricks” for efficient computation 

– Dual formulation only assigns parameters to samples, not features

φ(  )

φ(  )

φ(  )
φ(  )φ(  )

φ(  )

φ(  )
φ(  )

φ(.)
φ(  )

φ(  )

φ(  )

φ(  )
φ(  )

φ(  )

φ(  )

φ(  )
φ(  )

φ(  )

Feature spaceInput space

Polynomials of degree two
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• While working in higher dimensions is 

beneficial, it also increases our running time 

because of the dot product computation

• However, there is a neat trick we can use

• consider all quadratic terms for x1, x2 … xm m is the 

number of 

features in 

each vector
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x
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2
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







m+1 linear terms

m quadratic terms

m(m-1)/2 pairwise terms

The 2 

term will 

become 

clear in the 

next slide
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Polynomials of degree d
in m variables 

Polynomials of degree d
in m variables 
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Original formulation

Min (wTw)/2

(wTφ(xi)+b)yi  1

Dual formulation
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Dot product for polynomials
of degree two
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How many operations do we need for the dot product?



 2xizi
i

  xi
2

i

 zi
2  2xix jziz j

j i1


i

 1

m m m(m-1)/2 =~ m2

The kernel trick

How many operations do we need for the dot product?



 2xizi
i

  xi
2

i

 zi
2  2xix jziz j

j i1


i

 1

m m m(m-1)/2 =~ m2

However, we can obtain dramatic savings by noting that



(x.z 1)2  (x.z)2  2(x.z)1

 ( x izi)
2  2x izi

i

 1
i



 2x izi
i

  x i
2

i

 zi
2  2x ix jziz j

j i1


i

 1

We only need m 

operations!
Note that to evaluate a new sample 

we are also using dot products so 

we save there as well
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Where we are

Our dual target function:

i

y

yy

i
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jijiji
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

(x)(x

ji ,

mn2 operations at each 

iteration

To evaluate a new sample x

we need to compute:

byαb i

i

ii
T   )()()( xxxw 

mr operations where r

is the number of 

support vectors (i>0) 

Other kernels

•Beyond polynomials there are other very high dimensional basis 

functions that can be made practical by finding the right k ernel

function

- Radial-Basis Function:

- kernel functions for discrete objects (graphs, strings, etc.)



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

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 
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exp),(
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Kernels measure similarity

bKyαb i

i

ii
T   ),()φ( xxxw


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






 


2

2

2

)(
exp),(



zx
zxK Decision rule for a new 

sample x:

This slide is courtesy of Hastie-Tibshirani-Friedman, 2nd ed.
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Dual formulation for
non-separable case

Dual target function:



max  i 
i


1

2
 i jyiy j

i, j

 x ix j

 iyi  0
i



C  i  0 i

To evaluate a new sample x

we need to compute:

byb

i

ii   xxixwT

The only difference is 

that the I’s are now 

bounded 

Why do SVMs work?

• If we are using huge features spaces (with kernels) how come we 

are not overfitting the data?

- We maximize margin!

- We minimize loss + regularization
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Software

• A list of SVM implementation can be found at 
http://www.kernel-machines.org/software.html

• Some implementation (such as LIBSVM) can handle multi-
class classification

• SVMLight is among one of the earliest implementation of SVM

• Several Matlab toolboxes for SVM are also available

Multi-class classification with SVMs

What if we have data from more than two 

classes?

• Most common solution: One vs. all

- create a classifier for each class against 

all other data

- for a new point use all classifiers and 

compare the margin for all selected 

classes 

Note that this is not necessarily valid 

since this is not what we trained the 

SVM for, but often works well in 

practice
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Applications of SVMs

• Bioinformatics

• Machine Vision

• Text Categorization

• Ranking (e.g., Google searches)

• Handwritten Character Recognition

• Time series analysis

Lots of very successful applications!!!

Handwritten digit recognition
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Important points

• Difference between regression classifiers and SVMs’

• Maximum margin principle

• Target function for SVMs

• Linearly separable and non separable cases

• Dual formulation of SVMs

• Kernel trick and computational complexity


