Support Vector Machines (SVMs)

Machine Learning - 10601

Geoff Gordon, MiroslavDudík

[partly based on slides of Ziv-Bar Joseph]

http://www.cs.cmu.edu/~ggordon/10601/

November 11, 2009

Boosting

weak classifiers ⇒ strong classifiers

- weak: slightly better than random on training data
- strong: eventually zero error on training data

AdaBoost

- begin with equal weights on all examples
- in each round t call a weak learner, get a classifier ht
- reweight examples:
 - increase weight where h_t makes mistakes
 - decrease weight where h_t is correct
- after T rounds, return a weighted ensemble

AdaBoost

- training error decreases exponentially (if weak learner assumption satisfied)
- training error decreases even faster if weak learners allowed continuous outputs
- margins of training examples increase
- large margins
 - ≈ simple final (strong) classifier
 - ≈ good generalization bounds

Overfitting regimes

- weak learner too strong: use smaller trees or stop early
- data noisy: stop early or regularize α_{+}

Logistic Regression vs AdaBoost

• Minimize *log loss* $\sum_{i=1}^{m} \ln\left(1 + \exp(-y_i f(x_i))\right) \qquad \sum_{i=1}^{m} \exp(-y_i f(x_i))$

• Minimize exponential loss

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Types of classifiers

- We can divide the large variety of classification approaches into roughly three major types
 - 1. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors
 - 2. Generative:
 - build a generative statistical model
 - e.g., Bayesian networks
 - 3. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, boosting, decision trees

Which classifier is the best?

[Caruana & Niculescu-Mizil 2006]

MODEL	1st	2ND	3rd	4TH	5тн
BST-DT RF BAG-DT SVM ANN KNN BST-STMP	0.580	0.228	0.160	0.023	0.009
	0.390	0.525	0.084	0.001	0.000
	0.030	0.232	0.571	0.150	0.017
	0.000	0.008	0.148	0.574	0.240
	0.000	0.007	0.035	0.230	0.606
	0.000	0.000	0.000	0.009	0.114
	0.000	0.000	0.002	0.013	0.014
LOGREG	0.000	0.000	0.000	0.000	$0.000 \\ 0.000$
NB	0.000	0.000	0.000	0.000	

Max margin classifiers

- Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from points on both sides

Max margin classifiers

- · Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from points on both sides

Max margin classifiers

- Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from points on both sides

Specifying a max margin classifier

Predict class +1

WTX+b=1

WTX+b=-1

Predict class -1

Is the linear separation assumption realistic?

We will deal with this shortly, but lets assume it for now

Classify as +1 if

Classify as -1 if

Undefined i

 $w^Tx+b \ge 1$

 $w^Tx+b \le -1$

 $-1 < w^T x + b < 1$

Maximizing the margin

Classify as +1 if $w^Tx+b \ge 1$ Classify as -1 if $w^Tx+b \le -1$ Undefined if $-1 < w^Tx+b < 1$

- · Lets define the width of the margin by M
- How can we encode our goal of maximizing M in terms of our parameters wandb?
- · Lets start with a few observations

Maximizing the margin


```
Classify as +1 if w^Tx+b \ge 1
Classify as -1 if w^Tx+b \le -1
Undefined if -1 < w^Tx+b < 1
```

- Observation 1: the vector w is orthogonal to the +1 plane
- · Why?

Let u and v be two points on the +1 plane, then for the vector defined by u and v we have $\overrightarrow{w^{T}}(u-v) = 0$

Corollary: the vector w is orthogonal to the -1 plane

Maximizing the margin

Classify as +1 if $w^Tx+b \ge 1$ Classify as -1 if $w^Tx+b \le -1$ Undefined if $-1 < w^Tx+b < 1$

- Observation 1: the vector w is orthogonal to the +1 and -1 planes
- Observation 2: if x^+ is a point on the +1 plane and x^- is the closest point to x^+ on the -1 plane then

$$X^+ = \lambda W + X^-$$

Since w is orthogonal to both planes we need to 'travel' some distance along w to get from x⁺ to x⁻

Finding the optimal parameters

$$M = \frac{2}{\sqrt{w^T w}}$$

We can now search for the optimal parameters by finding a solution that:

- 1. Correctly classifies all points
- 2. Maximizes the margin (or equivalently minimizes w^Tw)

Several optimization methods can be used: Gradient descent, simulated annealing, EM etc.